

DM searches towards dwarf galaxies with H.E.S.S. Celine Armand

Supervisors Francesca Calore - Vincent Poireau

GAMMA-RAY MEETING - ANNECY - JULY 8TH, 2019

3 PROJECTS

I. Ultrafaint dwarf galaxies with H.E.S.S.

II.WLM irregular dwarf galaxy with H.E.S.S.

III.Combined analysis of the classical dwarf galaxies with H.E.S.S., MAGIC, VERITAS, Fermi-LAT and HAWC

- Search for a DM signal in the HESS data towards dwarf galaxies

y-ray flux

Normalization Factor

where

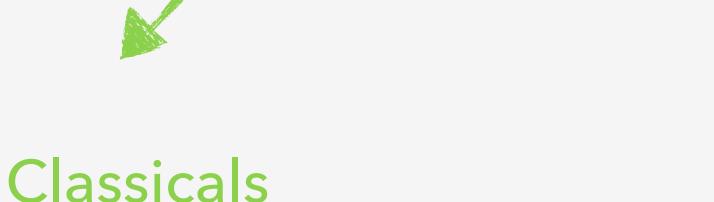
B_f = Branching ratio dN/dE = differential spectrum $A_{\rm eff}$ = Acceptance of H.E.S.S. R_{corr} = Energy resolution

• Set some upper limits on $\langle \sigma v \rangle$ if no signal is found for several annihilation channels

 $\Phi_{\gamma}(E_{\max}, E_{\min}) = \frac{1}{2} \frac{\langle \sigma v \rangle}{4\pi m_{\chi}^2} \cdot \int_{E_{\min}}^{E_{\max}} \int_{0}^{\infty} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} A_{\text{eff}}(E_{\gamma}) R_{\text{corr}}(E_{\gamma}, E_{\gamma}') dE_{\gamma} dE_{\gamma}' \cdot \mathcal{J}$

Particle Physics Φ_{PP} Factor

Astrophysical J Factor



Different types of objects

Dwarf spheroidal galaxies (dSphs)

- No gas
- Non-rotating systems
- ~20kpc up to ~200kpc

~150 - 2500 stellar tracers • ~ A few dozen stellar tracers

High uncertainties on their DM profile

Dwarf irregular galaxies (dlrrs)

- Star-forming region at their center
- Rotationally supported
- ~500kpc up to ~1Mpc
- Gas used a tracer
- Good constraints of their DM profile

Ultrafaints

Project II

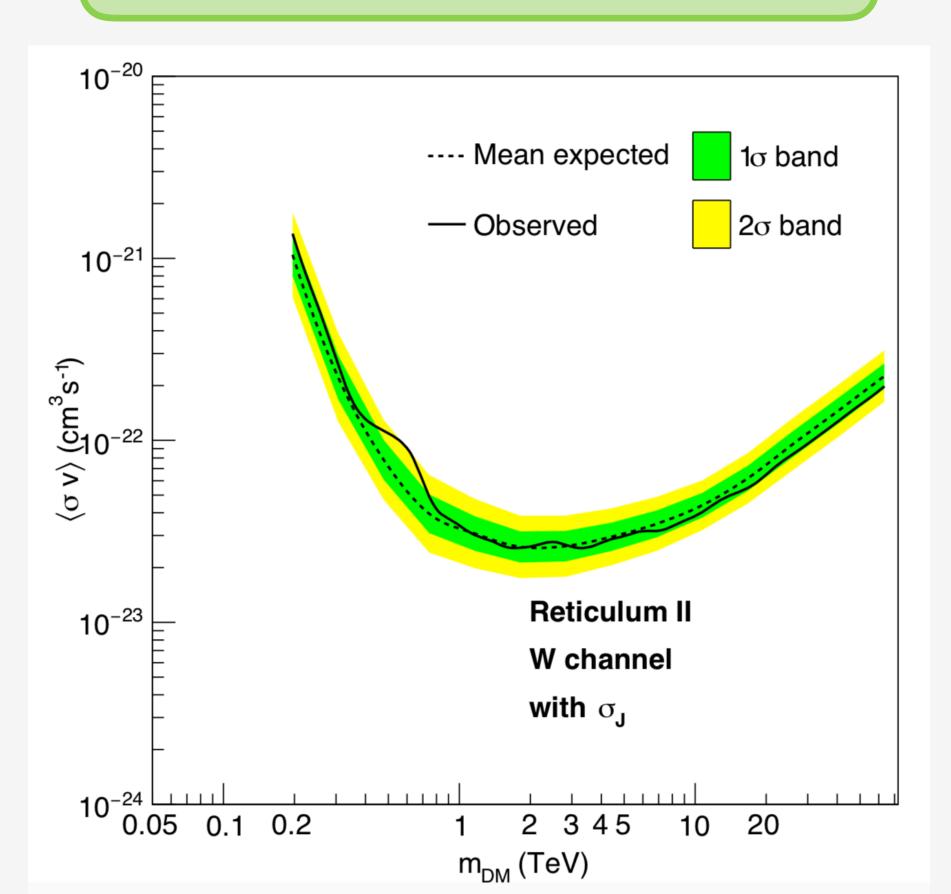
Project I – Ultrafaint dwarf galaxies

Targets - Data taken in 2017 & 2018

- **Tucana II** 16.4h
- **Tucana III** 25.3h
- **Tucana IV** 25.3h (in the field of view of Tucana III)
- Reticulum II 18.2h
- Grus II 19.2h

In collaboration with the CEA, Saclay

• Main analysis - Lucia Rinchiuso & Emmanuel Moulin Cross check - Vincent Poireau & Celine Armand



Project I – Ultrafaint dwarf galaxies

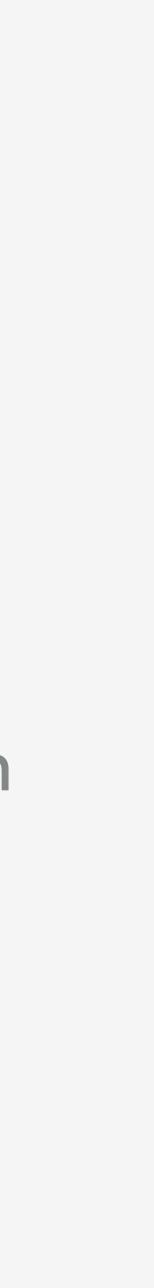
Results

No significant excess in the ROI of the ultrafaints

Upper limits at 95% C.L. using a Loglikelihood Ratio test statistics

Example of Reticulum II

- <σv> ~3e-22 cm3.s-1 at 1TeV
- WW channel + 7 others
- NFW profile
- J taken from G. Sameth+2015 (ref: 2015 ApJ 801 74)
- Uncertainties on J included



Project I – Ultrafaint dwarf galaxies

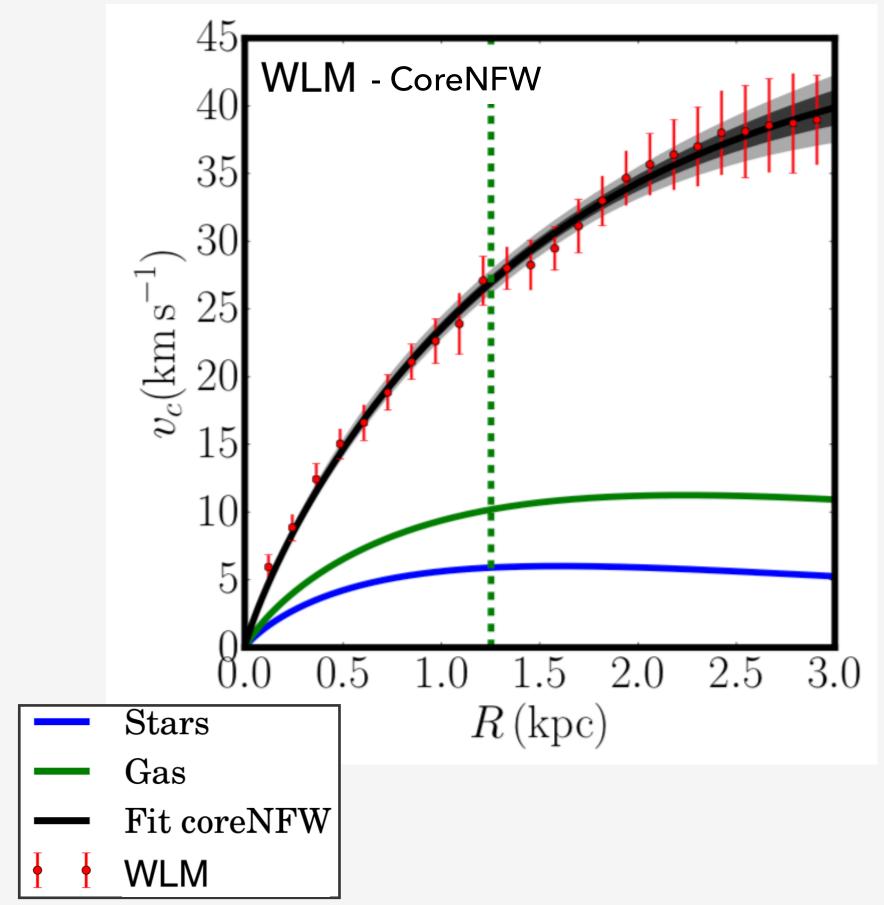
• H.E.S.S. internal review done

• Talk at the ICRC2019

• Paper in circulation within the collaboration before submission

Project II – WLM dwarf galaxy Data taken in 2018 Wolf-Lundmark-Melotte (WLM) - 18.6h

A few properties

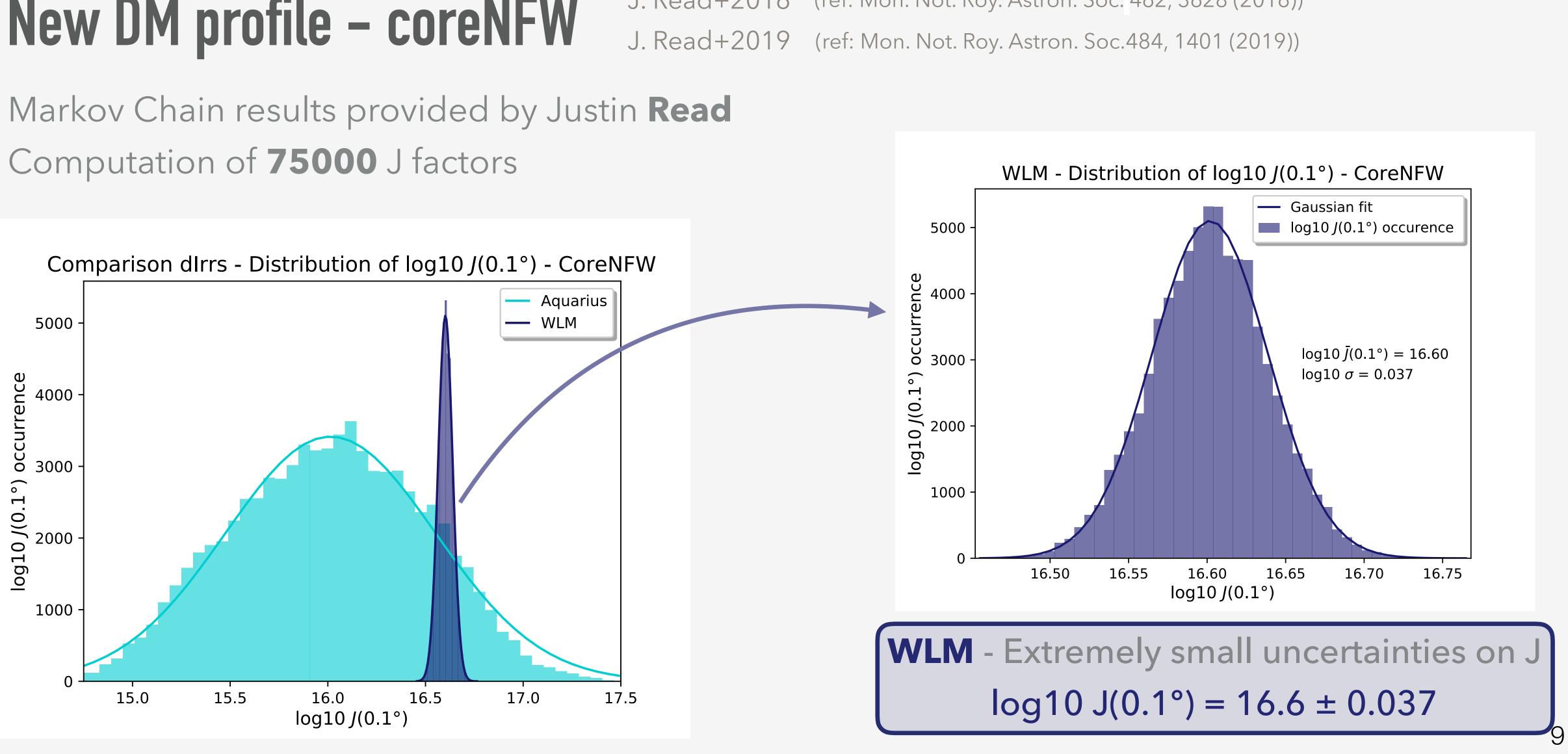

- Star-forming region
- Located at ~1Mpc from the Milky Way
- **Excellent** HI data, photometry & stellar kinematics
- Smooth HI distribution
- **Smooth** rotation curve Fitted by a **coreNFW** profile
- 1st dlrr observed by H.E.S.S. and by an Imaging Atmospheric Cherenkov Telescope (IACT)

In collaboration with the CEA, Saclay

- Main analysis Vincent Poireau & Celine Armand
- **Cross check** Lucia Rinchiuso & Emmanuel Moulin

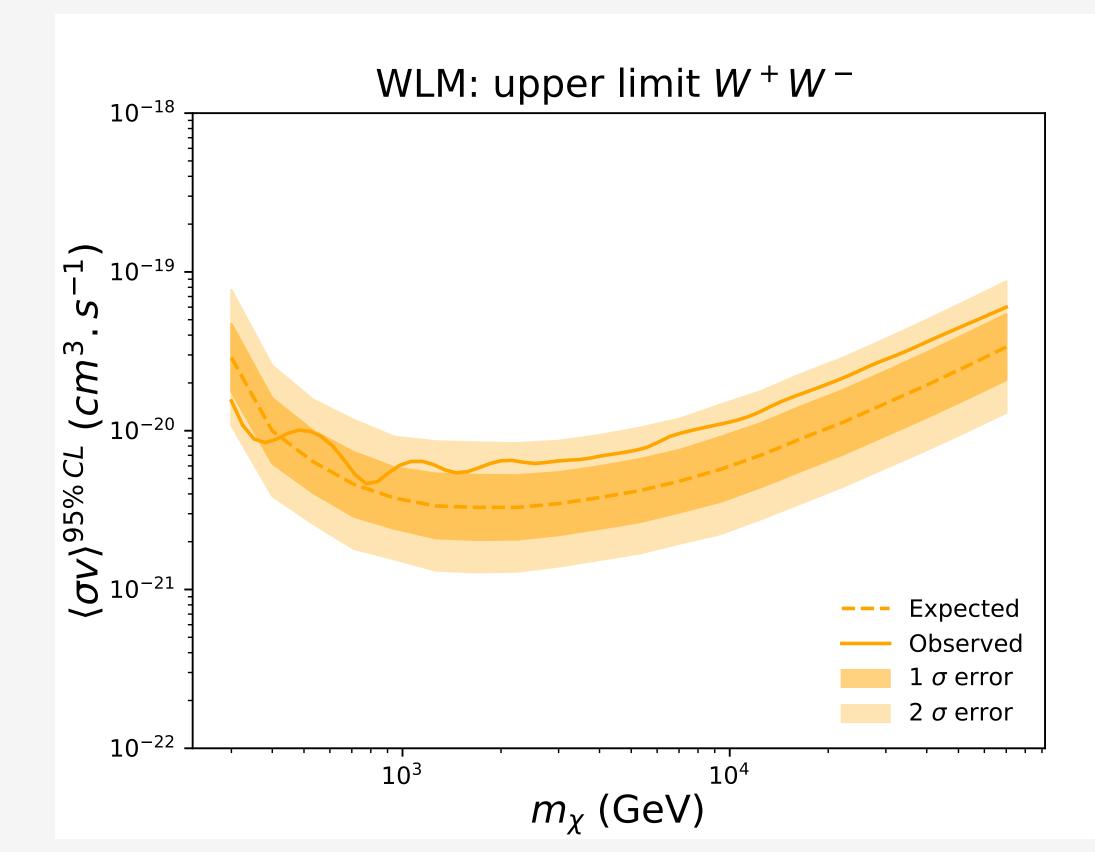
J. Read+2016

(ref: Mon. Not. Roy. Astron. Soc. 462, 3628 (2016))



Project II – WLM dwarf galaxy

New DM profile - coreNFW


- J. Read+2016 (ref: Mon. Not. Roy. Astron. Soc. 462, 3628 (2016))

Project II – WLM dwarf galaxy

Results

No significant excess

towards WLM

Upper limits at 95% C.L.

using a Loglikelihood Ratio test statistics

<σv> ~5e-21 cm3.s-1 at 1TeV

- WW channel + 7 others
- coreNFW profile
- Uncertainties on J included

Project II – WLM dwarf galaxy

• H.E.S.S. internal review in progress

- Poster at the ICRC2019
- Paper in preparation

Proceeding in circulation within the collaboration before submission

Project III - Combined analysis

Goal **Combine published results** on the dwarf galaxies observed by H.E.S.S., VERITAS, MAGIC, FERMI-LAT, HAWC

Targets

- 20 dSphs observed by one or more instruments
- All previously published by individual collaboration
- No significant excess in the data
- Combinaison of the UL for the first time

Source name	Experiments
Boötes I	HAWC, VERITAS, Fermi
Canes Venatici I	HAWC, Fermi
Canes Venatici II	Fermi
Carina	HESS, Fermi
Coma Berenices	HAWC, HESS, Fermi
Draco	VERITAS, HAWC, Fermi
Fornax	H.E.S.S., Fermi
Hercules	HAWC, Fermi
Leo I	HAWC, Fermi
Leo II	HAWC, Fermi
Leo IV	Fermi
Leo T	Fermi
Leo V	Fermi
Sculptor	H.E.S.S., Fermi
Segue I	MAGIC, VERITAS, HAWC, F
Segue II	Fermi
Sextans	HAWC, Fermi
Ursa Major I	HAWC, Fermi
Ursa Major II	MAGIC, Fermi
Ursa Minor	VERITAS, Fermi

Project III - Combined analysis Combinaison

- Upper limits at 95% C.L. using a Loglikelihood Ratio test statistics Each experiment provides a table of Likelihood vs. <σv> For each DM mass and 8 annihilation channels Combinaison from the product of the likelihood

From the H.E.S.S. side

- Publication of 2014 No Likelihood table was saved at that time
- Needs to redo the analysis on Sculptor, Fornax, Carina, Coma Berenices

In collaboration with the CEA, Saclay and Humboldt University Berlin

- Main analysis Vincent Poireau & Celine Armand
- **Cross check** Louise Oakes

H.E.S.S. Collaboration (ref: Phys.Rev. D90 (2014) 112012)

Project III - Combined analysis

• H.E.S.S. internal review done Highlight talk at the ICRC2019 Proceeding in circulation within the collaboration before submission

Conclusion

Conclusion

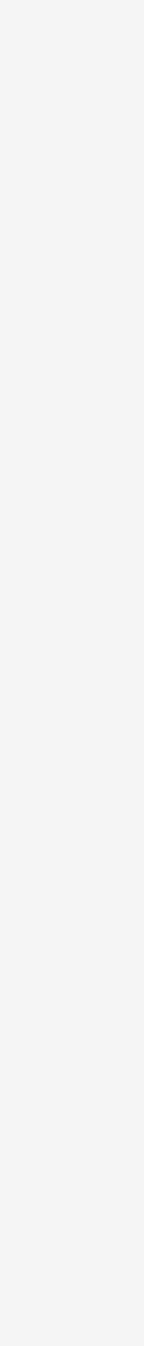
- No excess has been observed in the data
- Set upper limits for 8 annihilation channels **Project I - Ultrafaints**

Project II - WLM

- Proceeding in circulation in the collaboration • **Poster** at the ICRC
- Paper in preparation

Project III - Combined analysis

- Proceeding in circulation in the collaboration
- Highlight talk at the ICRC


Paper in circulation in the collaboration • Talk at the ICRC

Backup

Likelihood

Poisson likelihood

Loglikelihood Ratio Test (LLR)

|R| =

$$\begin{cases} -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(0,\hat{\hat{\theta}}(0))} & \hat{\mu} < \\ -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(\hat{\mu},\hat{\theta})} & 0 \leq \\ 0 & \hat{\mu} > \end{cases}$$

$\mathcal{L}(N_{ON}, N_{OFF}, \alpha | N_S, N_B) = \frac{(N_S + N_B)^{N_{ON}}}{N_{ON}!} e^{-(N_S + N_B)} \frac{(\alpha N_B)^{N_{OFF}}}{N_{OFF}!} e^{-\alpha N_B}$

Ref: Cowan et al, 2010

0,

 $\hat{\mu} \leq \mu$,

 μ .

 $N_{\varsigma} \leftrightarrow \mu$

 $N_{\rm ON} - N_{\rm OFF}/\beta \quad \leftrightarrow \hat{\mu}$

 $N_{\rm OFF}/\beta \leftrightarrow \hat{\theta}$

