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962 LiteBIRD Science outcomes

* Primordial gravitational waves from inflation
B-mode power spectrum

Full success

Extra success

Beyond the B-mode power spectrum

* Galactic science
* Optical depth and reionization of the Universe
* Cosmic birefringence

* Mapping the hot gas in the Universe

* Anisotropic CMB spectral distortions
* Elucidating anomalies with polarization
* Correlation with other data sets

LiteBIRD 10 July 2019



% Primordial Gravitational Waves

Big leap between LISA and LiteBIRD

quantum fluctuations in the very early Universe
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Primordial Gravitational Waves

History of the Universe

Gravitational Waves
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Opportunity to probe the Cosmic Inflation but also to
shed light on GUT-scale physics

Observational test of quantum gravity
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Primordial Gravitational Waves

inflation ¢

e dynamics of an homogeneous scalar field in a FRW geometry is given by

0+3Hp+Vy=0 and  H?= % (%qAQ +V(¢)>

e inflation happen when potential dominates over kinetic energy (slow-roll)

V(o)

where did V(®) comes from !

why did the field start in slow=-roll !

why is the potential so flat ?

how do we convert the field energy into particules !

[Daniel Baumann, arXiv:0907.5424]
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¥ \ Primordial Gravitational Waves

matter

e According to single field, slow-roll inflationary scenario, quantum vacuum
fluctuations excite cosmological scalar and tensor perturbations

k‘ ns—1
Pr(k) = A, (—) scalar
Ko

K\
PT(k) = Ay (k_> tensor

0
e with the definition of the tensor-to-scalar ratio “'r” r — At /AS
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Primordial Gravitational Waves

matter

e According to single field, slow-roll inflationary scenario, quantum vacuum
fluctuations excite cosmological scalar and tensor perturbations

k‘ ns—1
Pr(k) = A, (—) scalar
Ko

K\
PT(k) = Ay (k_> tensor

0
e with the definition of the tensor-to-scalar ratio “'r” r — At /AS

which characterises the amplitude of GW and gives direct constraints on
the shape of the potential

1/4
1/4 16 r
- energy scale of inflation ViIH(g) = 10'° GeV (0.01)
Ag ro\1/2 roo\1/2
- inflaton field excursion Mp ~ N. (g) = (o,oo1>

V.2
r = 8M}%l (7¢)

dln?’g V¢ 2 V¢¢
1= ~ 3M3 | —=| +2M3 =
s dink Pl(v) Py

- derivative of the potential
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Primordial Gravitational Waves

* Planck data do not need convex potentials (n>1), multi-fields models or
non-minimal kinetic term

* minimal models of particular interest include

the Starobinsky model “R+R2” (first model introduced)

the “Higg’s inflation” with non-minimal coupling from gravity introduced by
quantum corrections in a curved space-time (the same shape as R?)

inflaton based on a field appearing in the extensions of the standard model of
particle physics (usually extensions based on super-symmetry)

with LiteBIRD sensitivity we will be able to test a large classes of
inflationary models, in particular those who naturally explain
ns=0.966 together with the characteristic variation of the potential

LiteBIRD 10 July 2019



9462, Primordial Gravitational Waves
ﬁ CMB B-mode anisotropi

Current status of the B-mode measurements
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962, Primordial Gravitational Waves
{ ﬁ CMB B-mode anisotropi

LiteBIRD Expectation
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(no delensing)
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"‘ Primordial Gravitational Waves

Full Success
* o(r) < 10-3 (for r=0, no delensing)

» >50 observation for each bump (for r=0.01)

- Large discovery potential for
0.005 <r<0.05

- Simplest and well-motivated R+R2
“Starobinsky’” model will be tested

102
|

B Y Firue = 0.004
| Starobinsky | |
| R+R2 models

- Clean sweep of single-field models
with characteristic field variation scale

of inflaton potential greater than my,
[Linde, JCAP 1702 (2017) no.02, 006]

Tensor-to-scalar ratio (r)
A\

103

Ttrye = 0

O |
0.945 0.960 0.975
Primordial tilt (ns)
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962 Primordial Gravitational Waves

Full Success
* o(r) < 10-3 (for r=0, no delensing)

» >50 observation for each bump (for r=0.01)

Statistical uncertainty
* foreground cleaning residuals
* lensing B-mode power

Margin Statistical e | /f noise

uncertainty
0.00057 0.00057

* Bias from |/f noise

* Polarization efficiency & knowledge
* Disturbance to instrument

* Off-boresight pick up

* Calibration accuracy
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¥ \ Primordial Gravitational Waves

Extra Success

« improve o(r) with external observations

e delensing improvement to o(r) can be a factor > 2

Aiming at detection with >5¢ in case of
Starobinsky model
Baseline

+ delensing w/Planck CIB & WISE

102
|

Tensor-to-scalar ratio (r)

10—3

o
0.945 0.960 0.975
Primordial tilt (ny)
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Beyond the B-mode power spectrum

* within single field slow-roll inflation, the tensor perturbation obey the
vacuum equation R
q h@J —

* inducing the following statistical properties
|. nearly scale invariant power spectrum n¢ = -r/8
2. nearly Gaussian probability distribution

3. parity-conserving probability distribution
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$¢2 Beyond the B-mode power spectrum

* within single field slow-roll inflation, the tensor perturbation obey the
vacuum equation R
e hij = 0

* inducing the following statistical properties

|. nearly scale invariant power spectrum n; = -r/8
2. nearly Gaussian probability distribution

3. parity-conserving probability distribution
tensor tilt n.

* current upper-limit on tensor-to-scalar: r < ~0.01 impossible to verify the

* better sensitivity expected on tensor tilt: o(n;) > ~0.003 consistency relation !

BUT

other mechanism than single-field slow-roll inflation predict deviations from scale-invariant Py
(e.g. gravity inflation, open inflation, SU(2)-axion model, multi-field inflation...)

constraints on the primordial tensor power spectrum

can distinguish between inflation models
e.g. PCA [Campeti et al. 2019, arXiv:1905.08200]
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Beyond the B-mode power spectrum

* within single field slow-roll inflation, the tensor perturbation obey the
vacuum equation R
1 hij = 0

* inducing the following statistical properties
|. nearly scale invariant power spectrum n¢ = -r/8
2. nearly Gaussian probability distribution

3. parity-conserving probability distribution

107! — — Non-Gaussianity

BB
Cpy —

Ciy)(r = 0.038)

1072 -

indistinguishable with BB for £>10 alone

non-Gaussian features using BBB bi-spectrum

[ (1+1) CPB/ (2m) x T3 [uK?]
=
w
r
|

1 Exemple: “Pseudoscalar model”

105 e l e l [Namba, Peloso, Shiraishi, Sorbo, Unal, arXiv1509.07521]
10 100

LiteBIRD 10 July 2019



P42 Beyond the B-mode power spectrum

* within single field slow-roll inflation, the tensor perturbation obey the
vacuum equation R
q hZJ —

* inducing the following statistical properties
|. nearly scale invariant power spectrum n; = -r/8
2. nearly Gaussian probability distribution

3. parity-conserving probability distribution

Parity-violating
* parity-violating coupling of a scalar field * homogeneous effect degenerated with
to the electromagnetic tensor induces a miscalibration of polarization angles
rotation of the polarization direction e but
CgTprS = (2Aa) C}F, - constraints on Faraday rotation from primordial
CfB’ObS = (2Aa) CFF, magnetic field (with anisotropies of Aa)
CBB,obs L A QCEE . . . T
0 = (2Aa)°Cy ™. - parity-violating gravitational waves

(with spectral shape in Cp)
TB and EB non longer zero
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¢ o Reionization

A cosmic variance limited measurement of EE on large angular scales will be an
important, and guaranteed, legacy for LiteBIRD
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o(t) better than current Planck constraints by a factor 2
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i¢" 2 Neutrino sector

* Improvement in reionization

optical depth measurement 0.070 ——
Region to exclude for
|mP||es: > 30 detection of minimum mass
- 0.065
5 /
- 6(Zmy) = |5 meV N 0.060 | 5
) /,
. . . 9
- determine neutrino hierarchy 5 0.055
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2 0 050
- measurement of minimum mass «
. O
(Z 3o detection NH, = >o B C Z1Planck+CMB-54+-DES|
detection for |H) O 0.045 ~Planck+ CMB-54+4LSST |
B - LiteBIRD
+LiteBIRD
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* With frequency range from 34 to 448 GHz and access to large scales
LiteBIRD will gives constraints on

- Characterisation of the foregrounds SED
- Large scale Galactic magnetic field

- Models of dust polarization grains

Synchrotron Dust
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| \‘?"Mapping the hot gas in the Universe

* significant improvement on the SZ y-map in terms of foregrounds residuals

Brightness Difference [kdy str™']

thanks to the |5 bands

Wavelength |mm
1 J [ O.;5

10124 (L +1)¢)Y/2n

200 300

Frequency [GHz]

LiteBIRD

10 July 2019
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P62 Spectral distortions with LiteBIRD

* Anisotropic CMB spectral distortions could be measured well
- Forecasts better than PIXIE ! (15 bands are many)

- Multi-field effects or non-Bunch-Davies initial conditions

» spatially-varying chemical potential distributions [Pajer-Zaldarriaga-2012, Ganc-Komatsu-2012]

» Effects on CpHH, CpHT

* Frequency Space Differential measurements for detecting
any spectral distortion [Mukherjee-Silk-Wandelt 2018]

- Use inter-frequency differences only

interesting theoretical ideas need experimental assessment:
* include |/f noise, systematic errors, etc...
* use advantages of multi-color detectors

* use “controlled imperfection” of HWVP for gain calibration
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* Galaxy surveys

full-sky map of hot gas
(thermal SZE)

®

3D distribution of the matter

(galaxy survey)

how gas traces the matter in the Universe s A —

* Integrated Sachs-Wolf effect

* Lensing

LiteBIRD E-modes

e -

CMB-S4 high-resolution

improvement on ISWV signal (~20%)

improve our knowledge of the
projected gravitational lensing
produced by the large-scale
structure

LiteBIRD

10 July 2019
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