Eric Chassande-Mottin CNRS/IN2P3 AstroParticule et Cosmologie

GW astronomy today

• 2015-2017: two observing runs

- 10 binary black hole (BBH) mergers
- 1 binary neutron star (BNS) merger

https://www.gw-openscience.org/catalog

- Advanced LIGO and Virgo observing
 - Stable operation (~70 %) since April 1st 2019
 - 36 GW alerts 7 retractions
 - 21 events classified as BBH, 4 as BNS and 2 events as NS-BH
- No electromagnetic counterpart detected so far

Binary black hole
Binary neutron star
Neutron star-black hole

~ 1 alert/week

May						June						July					August															
	Мо	Tu	We	Th	Fr	Sa	Su		Мо	Tu	We	Th	Fr	Sa	Su		Μ	оT	Гu	We	Th	Fr	Sa	Su		Мо	Tu	We	Th	Fr	Sa	Su
18			1	2	3	4	5	22						1	2	27	1		2	3	4	5	6	7	31				1	2	3	4
19	6	7	8	9	(10)	11	12	23	3	4	5	6	7	8	9	28	8		9	10	11	12	13	14	32	5	6	7		9	10	11
20	13	14	15	16	17	28	19	24	10	11	12	13	14	15	16	29	1	51	16	17 (18)	19	20	21	33	12	13	14	15	ß	17	18
21	20	(21)	22	23	A	25	26	25	17	18	19	20	21	22	23	30	2	2 2	23	24	25	26	27	28	34	19	20	21	1	23	24	25
22	27	28	29	30	31			26	24	25	26	27	28	29	30	31	2	э з	30	31					35	26	27	28	23)	30	31	

September Mo Tu We Th Fr Sa Su

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
O3	HLV	2^{+8}_{-2}	0^{+19}_{-0}	15^{+19}_{-10}
O4	HLVK	8^{+42}_{-7}	2^{+94}_{-2}	68^{+81}_{-38}

https://arxiv.org/abs/1304.0670

	01	O 2	O 3	04 0	5
1100	80 Mpc	100 Мрс	110-130 Mpc	160-190 Мрс	Target 330 Mpc
LIGO					A+
		30 Мос	50 Mpc	90-120 Moc	150-260 Mpc
Virgo		Mpc	Mpc	wpc	adV+
			8-25	25-130	130+ Mag
KAGRA			Mpc	mpe	Kagra+
					Target
LIGO-Indi	а				330 Mpc
20	15 2016	2017 2018 2	019 2020 202	21 2022 2023 202	4 2025 2026

- Five large-scale detectors in operation
 - Best BNS range ~ 300 Mpc Horizon z ~ 0.15
 - ~3 x current sensitivity rough extrapolation from 03 → ~4 events/day (!)
 - O(100) BBH and O(10) BNS per year [rates will be revised after O3]

- Transition from 2.5G to 3G detectors
 - Final objective: 10 x (or more) increase wrt 2G
 - BNS range z ~ 1, BBH z ~ 10

• LISA space-mission close to launch pad

- GW in the mHz range
- Now in phase A

Theseus-France workshop 2019

GW sensitivity over 3 decades

3rd generation of GW detectors

- In the major roadmaps for large infrastructures
 - In the US: Astro2020 decadal survey
 - In Europe: European Strategy for Particle Physics (ESPP) and European Strategy Forum on Research Infrastructures (ESFRI)
 - Lagging behind at national level in France
 - Prospectives IN2P3 and INSU

3rd generation of GW detectors

Gravitational Wave International Commitee

GWIC 3G

https://gwic.ligo.org/3Gsubcomm

Sep 23, 2019

International coordination (US, EU, AU)

Scientific program – 5 main targets

- Extreme gravity Physics of black holes
- Extreme matter
- Reach current observational limits
- Observe stellar-mass binary black holes throughout the universe
- Cosmology, early universe and dark sector

Underline the importance of a 3rd instrument in the southern hemisphere or Asia

Theseus-France workshop 2019

2.5G and 3G detector concepts

- **Voyager**: use LIGO infrastructure, heavy test masses, cryo
- OzHF: km size, heavy test masses, > 1 kHz
- Cosmic Explorer: 40 km, L-shaped
- Einstein Telescope: underground, 10 km, triangular, xylophone design 'hot' (high laser pow) + 'cold' (cryo, low pow)

Different levels of maturity

ET EINSTEIN TELESCOPE

Underground, triangular, 10km on a side, up to 6 interferometers

- 2010 Conceptual study
- 2018 ET collaboration Site qualification
- 2019 "light" TDR (in progress)
- 2022 Site selection
- 2023 Technical design
- 2025 Work on infrastruc. begins
- 2032+: Installation, commissioning, operation

Compact binaries in the 3G era (1)

Compact binaries in the 3G era (2)

Prop to SFR

Detector	BNS	NSBH	BBH
O2	0.028 - 0.91	0.12 - 1.1	27 - 40
O3	0.11 - 3.4	0.46 - 3.9	94 - 1.5×10^2
AdLIGO	0.27 - 8.6	1.2 - 9.3	2.2×10^2 - 3.6×10^2
A+	0.88 - 28	3.2 - 26	$5.6 imes10^2$ - $9.7 imes10^2$
A++	2.3 - 71	8.1 - 63	$1.3 imes10^3$ - $2.4 imes10^3$
Voyager	$32 - 9.4 \times 10^2$	1.0×10^2 - 7.8×10^2	9.7×10^3 - 2.7×10^4
ET-B	1.1×10^3 - 2.7×10^4	2.4×10^3 - 2.2×10^4	4.9×10^4 - 2.7×10^5
CE	$1.6 imes10^4$ - $2.7 imes10^5$	$1.6 imes 10^4$ - $1.4 imes 10^5$	$8.6 imes10^4$ - $5.4 imes10^5$
Noiseless	2.8×10^4 - 4.5×10^5	$2.0 imes10^4$ - $1.8 imes10^5$	$9.2 imes10^4$ - $5.7 imes10^5$

> 10^5 BNS/yr \rightarrow + 1 BNS every 5 mins ~50 % of all BNS mergers

10⁶ BBH/yr → 1 BBH every 30 sec ~90 % of all BBH mergers

Theseus-France workshop 2019

Baibhav et al, arxiv:1906.04197

Neutron star binaries in the 3G era (1)

- A small fraction of very bright "nearby" sources
 - O(10)/yr BNS at 400 Mpc with SNR ~ 100-140 GW170817 observed with 3G: SNR ~ 1000-1400 (!)
 - Allow for detailed tests of pre- and post- merger signal
 - NS tidal deformability and nature of remnant
 - Allow for early detection and warning
 - Could achieve one hour before merger

Neutron star binaries in the 3G era (2)

BNS at 400 Mpc

condensates of exotic particles or quark matter phases ?

Theseus-France workshop 2019

Sep 23, 2019

Multimessenger astronomy with Theseus

Assume GW network of 2 CE & 1 ET

- 10^6 detectable BNS per yr out to z ~ 30
- 1 % (15k) of the detected BNS per yr are resolved to better than 1 square degree

Joint 3G – Theseus observations

- All "on-axis" short GRB detectable by XGIS 20 sGRB/yr
- Structured jet from short GRB sources at 400 Mpc up to 5 $\theta_{_{iet}}$ with XGIS
- Late off-axis afterglow from "magnetar wind" with SXI
- Kilonova with IRT

Theseus-France workshop 2019

For what science? Cosmography with standard sirens

- Tension in the current H_0 measurements from early/late times
- Infer H0 from D-z measurement from BNS "standard sirens"
 - Demonstrated with GW170817
- Need ~200 BNS D-z measurement to reach the percent level
 - May reach this goal with 2G
 - This will depend on our ability to find EM counterparts
 - We see in O3 this is difficult 10-100 sq degrees loc
- A network 3G instruments will localize 10⁴ BNS / yr within 1 square degree
- 3G will observe more distant BNS Allow to measure other cosmological parameters

Concluding remarks

- Current generation of gravitational-wave detectors are detecting the **tip of the iceberg**
- The world-wide GW community is getting organized to build a third-generation detector network to observe gravitational waves **throughout cosmic history**
- Opens new opportunities for multi-messenger observations
 - Theseus has the potential to play a key role in this field

Microseismic (best)

ET Pathfinder in Maastricht

