High-redshift radiation-hydrodynamics simulations of galaxy formation

J. Blaizot, with: T. Garel, H. Katz, T. Kimm, V. Mauerhofer, L. Michel-Dansac, J. Rosdahl, M. Trebitsch, A. Verhamme, J. B. Vielfaure

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Lyman-alpha emitters as probes of reionisation

Predicting Lya emission from simulated galaxies

- Full Radiation-hydrodynamics : ionisation of the IGM and Lyman-alpha emissivity of galaxies.
- **High resolution** : resolve everywhere the cooling time + resolve small-scale ISM structure (see *Verhamme+12*).
- Dust model : e.g. from metallicity & HI distributions (*Laursen+09*)
- Lya RT : this is a problem solved...
- Large volume with consistency between the IGM largescale ionisation state and the activity of galaxies, taking into the full complexity of the cosmological context (clustering, clumping, ...)

Simulations of galaxy formation during the EoR: The SPHINX project.

Simulations with resolution < 10pc are predictive in terms of escape give access to essential observational probes (absorption/emission lines)

SPHINX setup

- Volume widths of 5 and 10 cMpc ... larger volumes to come
- Physical resolution $\Delta x < 10 \text{ pc}$
- DM mass resolution of 3×10⁴ M_☉ per particle
 10⁷ M_☉ halo has 300 particles ≫ all potential sources resolved.
- Stellar particle resolution of $10^3 M_{\odot}$ (particle = a stellar population)
- Bursty star formation with local efficiency that decreases with virial parameter and increase with mach number
- SN explosions modelled with momentum kicks (Kimm et al., 2015)
 We calibrate SN rates with 4-fold boost for realistic luminosity function
- No calibration on unresolved fesc (i.e. we inject the SED luminosity)
- We run with **binary and single star SEDs**

1. Results from SPHINX simulations

SPHINX20

Rosdahl+18

Reionisation history: changing stellar populations

Fesc is regulated by SN explosions

Trebitsch+17: SN explosions clear starforming clouds and allow the escape of LyC photons

(See also Kimm+14, Kimm+19)

Binary stars still produce ionising photons after the SN explosions clear the way for escape. Models with such stars are more efficient at ionising the IGM.

Stars alone can ionise the IGM ... Rosdahl + 18 With a relatively low escape fraction (~10%)

Rosdahl+20

Which galaxies contribute most to reionisation ?

Katz+19

Reionisation feedback

Reionisation diffuses filaments, turning off growth source for low-mass galaxies

2. Observations of the SPHINX simulations

Thibault Garel

SPHINX UV Luminosity functions z = 6 to 9

Thibault Garel

SPHINX Lyman-alpha Luminosity function (z = 6)

Thibault Garel

SPHINX Lyman-alpha Luminosity function (z = 6)

Where are photons emitted ...

Collisional emission comes from warm (~10⁴K) relatively diffuse gas, whereas **recombinations** *also* come from cold and dense (100s K, nHI > 500 #/cm3) star-forming clouds.

Where are photons absorbed ...

Escape from star-forming clouds is very hard before they are dispersed by SN explosions. Recombination photons are preferentially lost there.

Where are photons seen ...

After Lya RT

Valentin Mauerhofer

Absorption lines: can we infer LyC leakage ?

One expects that the depth of absorption lines due to cold gas would be a good indicator of the escape fraction of ionising photons... is that so ?

Mock spectrum from a SPHINX zoom-in simulation

Valentin Mauerhofer

Absorption lines: can we infer LyC leakage ?

We find no clear correlation between the escape fraction of ionising photons and the equivalent width or the residual flux of LIS absorption lines

Jean-Baptist Vielfaure

GRBs as a probe of the ISM ?

Comparison of the NHI distribution for 140 GRBs (Tanvir et al. 2019) with NHI distribution of 140 LOS calculated from the GRB position in the simulation

Conclusions

- High-resolution (<10pc) radiation-hydrodynamics cosmological simulations of galaxy formation have reached a high level of maturity.
- They produce **realistic ISM** for large populations fo galaxies.
- **Reionisation happens naturally** at roughly the right time, with no free parameter (ahem ...). Small (but not too small) galaxies are responsible for this.
- Such simulations can be used to test complex observing strategies (e.g. using GRBs) and help their interpretation.
- Not in this talk: emission lines from galaxies and their CGM work well too !
- More to come: (1) more physics (cosmic rays, MHD, ...), (2) larger volumes & zooms on more massive objects.