

JOHAN RICHARD (CRAL)

First Galaxies

Journée THESEUS France - 23 septembre 2019 - Paris

FIRST LIGHT

- What are the **first galaxies**?
- What sources caused **reionisation** ?

Observational probes, Future instruments

Cosmic history: THESEUS and other milestone ESA missions

REIONISATION

Low value for $\mathbf{\tau}$ suggested by Planck data:

- \bullet consistent with reionized Universe at z ~ 6
- Later reionisation: enough low luminosity galaxies at z < 9 ?

- Simulating 21 cm signal:
 e.g. anisotropies from differential brightness temperatures
- Zawada et al. 2014, predictions for SKA over 20x20 degrees

XLVII. Planck constraints on reionization history

QSO ULASJ1120+0641 at z=7.085

PREDICTIONS FROM SIMULATIONS

Trebitsch+16

- Numerical simulations help understanding the detailed properties of the sources of reionisation. New methods implemented in RAMSES (Rosdahl+13, +15)
- Now enough resolution to resolve the Lyman Continuum and Lyman alpha escape !

SOURCES OF REIONISATION

$$\dot{n}_{ion} = f_{esc}\xi_{ion}\rho_{UV}$$
(+ clumpiness of IGM)
W Abundance of SF galaxies
N Rate of ionising photons
Fraction of escaping
ionising photons

LUMINOSITY FUNCTION FROM DEEP FIELDS

Current limits on the luminosity function:

- knowledge of the redshift evolution at z > 7, limited by statistics
- extrapolation to the faint end (sources dominating reionisation)

FRONTIER FIELDS(1)

- Very deep Hubble observations of 6 massive lensing clusters
- ~ 29 AB in the image plane: up to ~ 32 AB intrinsically! => typical JWST sources

Atek et al. 2014, 2015, 2016,2018

Infante, Zheng, Laporte et al. 2015 (z>9)

FRONTIER FIELDS (2)

FIELDS

Oesch et al. 2015

z = 7.73

IMPLICATIONS FOR REIONIZATION

Caveats:

- Photometric candidates
- Extrapolation of LF
 - Assumptions on ξ_{ion}

esc

Assumptions on

MUSE AND THE LYMAN-ALPHA UNIVERSE Bacon et al. 2015

Hubble Deep Field South (27 hrs obs.):

- ~ 200 LAEs at z > 3
- 26 emitters > 29.5 AB fainter than HDFS depth

Omnipresence of extended Ly α halos

PREDICTIONS FROM SIMULATIONS

Cooling radiation is likely a significant contribution to giant nebulae (Rosdahl+12)

Radiative transfer in AMR simulations:

MCLya, now RASCAS

(Verhamme, Blaizot, Michel_Dansac, Garel)

Test assumptions

x [arcsec]

MUSE AND THE LYMAN-ALPHA UNIVERSE

500 redshifts for 436 sources in the Frontier Field cluster A2744

~74 Ly α / arcmin²

de la Vieuville+2019

MUSE AND THE LYMAN-ALPHA UNIVERSE

PREDICTIONS FROM SIMULATIONS

- SAMs provide a statistical view of galaxies at high redshifts.
- Predictions for the Lyman-alpha luminosity function, but also:
- the angular correlation function of LAEs
- the fraction of LAEs with redshift
- the distribution of Lyman-alpha line profiles

$$f_{\rm esc}$$

Garel+2012, 2015, 2016

Stark et al. 2017

Gutkin et al. 2016

Strong interest in using other emission lines than Lyman- α : CIII], CIV, ...

At z>6 CIII] could be the brightest spectroscopic feature when Lyman- α is suppressed but low equivalent width (typically 12 Angstr.)

Valuable indicators of hard ionising spectra CIV (48 eV), OIII] (35 eV), CIII] (24 eV), HeII (25 eV)

STRONG NEBULAR EMISSION LINES

For specific redshifts strong impact of emission lines in Spitzer / IRAC => selection of sources at z=6.7

Confirmation of CIV and NV emission at high z: evidence for high

¢. sion at z>7?

PROBING ESCAPE FRACTION f_{esc}

Observation probes:

- direct measurement of Lyman Continuum (UV imaging / spectroscopy)
- outflowing neutral gas from rest-UV absorption lines
- covering fraction of low-ionisation gas from absorption lines
- recombination lines analysis

DUSTY HIGH REDSHIFT SOURCES

"Dark" galaxies seen with ALMA at z>3 (Wang et al. 2019)

DUSTY HIGH REDSHIFT SOURCES

ALMA AND HIGH REDSHIFT SOURCES CO(12-11)

Searching for typical (~< L*) UVselected sources at (sub)mm wavelengths starts to be possible with the combination of ALMA (and NOEMA) + lensing

Béthermin et al. 2016

[CII] detections at z>6

Knudsen et al. 2017

[CII] intensity mapping at z>4.5 with CONCERTO

3D spectrometer to map the star formation at z>4.5 with [CII].

Answer the questions of whether dusty star-formation contributes to early galaxy evolution, and whether dusty galaxies play an important role in shaping cosmic reionization

Cross-correlations:

- With [OI] and [NII] lines: ISM physics
- with HI : Capture physics during EoR, including the ionized bubble sizes and the mean ionization fraction
- With galaxy redshift surveys: When did the Universe produce dust?
- 2 Sq. Deg. during 1500 hours
- δz=0.05 at z=7
- 200 GHz < υ < 360 GHz

(G. Lagache)

GAMMA RAY BURSTS

INSTRUMENTATION: EMIR

Exploitation of the EMIR/GOYA survey on GranTeCan (10.4m, Canaries)

EMIR : configurable multi-slit spectrograph in the near-infrared.

EMIR/GTC is an ideal tool for the direct study of first galaxies and reionisation, giving access to the physical properties of galaxies at their early assembly stage.

JWST (2021-

 The James Webb Space Telescope is clearly the major leap for first light sources.

Strategy foreseen:

- Very deep extragalactic survey with NIRCAM
- Spectroscopic follow-up with NIRSpec (Low-res and Mid-res)
- Photometric follow-up with MIRI Zackrisson et al. 2013

Z = 7

0.5

0

-3.2

3

25

2

1.5

log₁₀ EW(Hβ) (Å)

ELT (~ 2025)

- HARMONI: First light IFU instrument, 0.47 2.5 microns
 - 0.86" x 0.61" with 4 mas spatial pixels: follow-up of the brightest sources at z > 3, morphology, kinematics
 - 9.12" x 6.42" with 60x30 mas spatial pixels: HARMONI deep fields, follow-up of faint NIRCAM-selected sources
- MOSAIC, multi-object spectrograph, 0.4 1.8 microns
 - 7 x 7 arcmin FoV with 200 x 0.6" apertures
 - 20 IFUs of 2" x 2"

Origins will trace the metal enrichment history of the Universe, probe the first cosmic sources of dust, the earliest star formation, and the birth of galaxies.

Charting the Rise of Metals, Dust, and the First Galaxies

Star formation history, primordial galaxies

Neutral fraction of IGM, ionizing radiation escape fraction

z=9.2 simulated ELT afterglow spectrum

GRB accurate localization and NIR, Xray, Gamma-ray characterization, <u>redshift</u>

THESEUS SYNERGIES

Cosmic

chemical

evolution,

Pop III

CONCLUSIONS

- The picture of reionization becomes less and less blurry between CMB, high z quasars and observations of first sources. Still : observing the first sources is clearly limited by small number statistics especially at z>7
- Assumptions on extinction, number of low-L sources and escape fraction of ionising photons.
- Large spectroscopic samples at z > 3 become available with MUSE deep fields (mostly LAEs), improving our knowledge of selection effects and the UV properties at high redshift.
- Numerical simulations are making very good progress and we can expect strong impact from JWST, the ELT.
- THESEUS will provide a more complete census of star-formation especially at z>8, and has a unique 'link' between the various tests