

THESEUS Payload

- Soft X-ray Imager (SXI): a set of four sensitive lobstereye telescopes observing in 0.3 - 5 keV band, total FOV of ~1sr with source location accuracy < 1-2'.
- X-Gamma rays Imaging Spectrometer (XGIS,): 3 coded-mask X-gamma ray cameras using bars of Silicon diodes coupled with CsI crystal scintillators observing in 2 keV 10 MeV band, a FOV of ~1sr, overlapping the SXI, with ~5' source location accuracy.
- InfraRed Telescope (IRT): a 0.7m class IR telescope IRT observing in the 0.7 – 1.8 µm band, providing a 10'x10' FOV, with both imaging and moderate resolution spectroscopy capabilities.

- LEO (< 5°, ~600 km)
 Rapid slewing bus
- Prompt downlink

THESEUS - Sharing of the Responsibilities -

The InfraRed Telescope (IRT) - General Organization -

The InfraRed Telescope (IRT) - Overall Specifications -

Telescope type:	Off-axis Korsch			
Primary & Secondary size:	700 mm & 230 mm			
Material:	SiC (for both optics and optical tube assembly) or Zerodur+CFRP, or other combination of materials satisfying requirements.			
Detector type:	European ALFA 2048x2048 pixels detector (15 µm pixels) or Teledyne Hawaii-2RG 2048 x 2048 pixels (18 µm each)			
Imaging plate scale	0".45-0.7"/pixel (depending on the S/C jitter/drift)			
Field of view:	15' x 15'	15' x 15'	5' x 5' (2' x 2' goal)	
Resolution $(\lambda/\Delta\lambda)$:	2-3 (imaging)	20 (low-res)	500 (high-res)	
Sensitivity (AB mag):	H = 20.6 (300s)	H = 18.5 (300s)	H = 17.5 (1800 s)	
Filters:	ZYJH	Prism	VPH grating	
Wavelength range (µm):	0.7-1.8 (imaging)	0.8-1.6 (low-res)	0.8-1.6 (high-res)	

The InfraRed Telescope (IRT) - Telescope Optical Design -

Baseline since the ESA CDF: Korsch off-axis telescope (as Euclid).

Advantages:

- The telescope and the instrumen have a clear mechanical interface.
- Good image quality at this interface: telescope and instrument can be tested separately by the Prime and the Consortium.

The InfraRed Telescope (IRT) - Instrument Optical Design -

The instrument is a Three Mirrors Anastigmat (TMA):

- Red is photometric and low resolution modes.
- Blue is high resolution mode.

Photometric mode Low Resolution mode

Filter (parallel plate) ٠

Double prism •

High Resolution mode

- Grating + prism (rotaded axis)
- Grating: 30 lines/mm
- Prism: 8° (get back on-axis) / 4° (grating deviation compensation)

The InfraRed Telescope (IRT) - Instrument Image Quality -

Surface: IMA

Spot Diagram				
Units are µm. Airy Radius: 21.19 µm. Legend items refer to Wavelengths Field : 1 2 3 4 5 6 7 8 9 RMS radius : 11.622 11.715 13.184 11.584 9.289 7.893 11.622 11.713 13.183 GEO radius : 25.904 25.209 31.383 23.600 15.195 21.239 25.907 25.205 31.380 Scale bar : 40 Reference : Centroid	2019 – 01 Theseus IRT Lab. d'Astrophysique de			

The InfraRed Telescope (IRT) - Possible Implementation -

To be discussed with the Prime!

The InfraRed Telescope (IRT) - Mechanical Concept -

The InfraRed Telescope (IRT) - Performances Simulation Tools -

The InfraRed Telescope (IRT) - Some Preliminary Results -

With a 0.7 m aperture space borne NIR telescope (telescope baseline).

For 0,45" pixel size, 16 pixels in photometric aperture (~76 % of the source flux)

Scenario	1 : Beginning Of Life	2 : End of Life	3 : Current best estimate
CND (litter + drift considered) ;	45	42.4	20.4
SNR (Jiller + drift considered);	15	13,1	20,1
σ _{RON} = 7 e-	6.8	6,0	20.1
SNR (Jitter + drift considered) ;			
σ _{RON} = 18 e-			
SNR (Jitter + drift considered);	10.2	8.9	13.5
σ _{RON} = 11,5 e-			

Studies are continuing within the framework of the Theseus System Working Group.

A Well-Known Example

GW170817/SSS17a seen by Theseus IRT in H band

The InfraRed Telescope (IRT) - Redshift Performances -

Initial values:

- *Z* = 6.0
- $\beta = 0.66$
- ➡ With a S/N=2, possible to measure the redshift with an accuracy <10% and an efficiency of 90%...

Fit having failed

The InfraRed Telescope (IRT) - Redshift Performances -

Questions arise in this mode:

- The resolution is not so high and the sensitivity remains limited.
- Not easy to measure abundances...
- The Theseus Science Study Team (TSST) is working on its optimization...

The InfraRed Telescope (IRT) - Risks Analysis -

- ✓ The opto-mechanical concept remains very classical and is largely based on the developments carried out on Euclid:
 - ➡ No risk identified at this level.
- ✓ The baseline for the sensor is the ALFA from Lynred (aka SOFRADIR):
 - ✓ Clearly not a mature sensor, but very important efforts from ESA to reach TRL5 in time for the M5 mission selection.
 - ✓ But the Teledyne sensor may be suitable and is already qualified.
 - Manageable risk at this level of project definition.