European Astroparticle

 Province

 Province

 Strategy

 APPE
 2017-2026

#### Romain Gaïor (LPNHE) Introduction astro / cosmo

**JRJC2019** 





Alexandr Friedmann (1922)

 $\frac{kc^2}{a^2}$  $8\pi G$  $\Lambda c^2$  $H^2$  $\binom{a}{-}^{*} =$ 

 $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}} + \frac{kc^{$  $\Lambda c^2$ 



 $\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$ 



 $H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2}$  $\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$  $\Omega_0 > 1$ Time

 $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}} - \frac{kc^{$ 





 $\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$ 





Ωο

# Cosmological probes



Velocity-Distance Relation among Extra-Galactic Nebulae.

Velocity measurement: red shift distance measurement: Luminosity + *standard candle* 

# Cosmological probes: SNIa



Mickael Rigault | JRJC 2018 | Cosmology

# CMB / BAO







#### **Julianna Stermer on BAO**

# Current picture



## Astroparticules: les messagers de l'univers...

## Astroparticules: les messagers de l'univers...



## **Cosmic rays**





## **Cosmic rays**



- Quest for sources at highest energies
- Fundamental physics

18.5

- Hadronic interactions (E up to 50TeV)
- Exotic phenomena (top down models)
- Ex: Pierre Auger Observatory, Telescope Array, Kascade Grande, LHASSO

20.0





#### Gamma rays



## Adrien Laviron on Compton telescope







### Gamma rays



Sources characterisation / Acceleration mechanism

- Diffuse spectrum of gammas
- Fondamental physics: dark matter, Lorentz invariance test
   Ex: HESS, MAGIC, FERMI, CTA



## Neutrino



## Neutrino



Sources characterisation / Acceleration mechanism

- Diffuse spectrum of neutrinos
- Fondamental physics: dark matter
- •Ex: IceCube, KM3Net, ARA

5,160 DOMs deployed in the ice

Antarctic bedrock

 $\nu_{\ell} + X \to \ell^- + Y$  with  $\ell = e, \mu, \tau$ 

### **Gravitational waves**



## **Gravitational waves**



#### **Multi-messenger Observations of a Binary Neutron Star Merger**



#### Multi-messenger Observations of a Binary Neutron Star Merger





#### Matter density ~ 0.3

Star density  $\Omega_{\text{stars}} \equiv \frac{\rho_{\text{stars}}}{\rho_{\text{c}}} \simeq 0.005 \rightarrow 0.01$ 

Big bang nucleosynthesis  $0.016 \leq \Omega_{\rm B} h^2 \leq 0.024$  .

→ Lack of baryonic matter









# DM requirements / models

Cold (not too relativistic)

neutral

feeble interaction

stable







## Dark Matter search strategies

#### Direct Method

**Ariel Matalon on DAMIC DM searches** 

Giorgos Papadopoulos on DAMIC-M electronics developemements



# Merci!

|       | The Search for Light Dark Matter with DAMIC                                                                | Ariel Matalon        |
|-------|------------------------------------------------------------------------------------------------------------|----------------------|
|       | Centre Moulin Mer                                                                                          | 09:30 - 10:00        |
| 10:00 | Development and characterization of novel electronics for the search of dark matter for Generation DAMIC-M | eorgios PAPADOPOULOS |
|       | Centre Moulin Mer                                                                                          | 10:00 - 10:30        |
| 11:00 | Reducing coating thermal noises in Gravitational wave detectors using AlGaAs crystalline mirrors           | s Victor Hui         |
|       | Centre Moulin Mer                                                                                          | 11:00 - 11:30        |
|       | Optimisation of the optical follow up of gravitationnal waves events                                       | Jean-Grégoire Ducoin |
|       | Centre Moulin Mer                                                                                          | 11:30 - 12:00        |
| 12:00 | The hunt for VHE gamma-rays in the Gravitational Waves era.                                                | Halim Ashkar         |
|       | Centre Moulin Mer                                                                                          | 12:00 - 12:30        |

#### Lunch

| 14:00 | Development of an advanced Compton telescope prototype for MeV-range gamma-ray astronomy                | M. Adrien LAVIRON 🥝 |
|-------|---------------------------------------------------------------------------------------------------------|---------------------|
|       | Centre Moulin Mer                                                                                       | 14:00 - 14:30       |
|       | StarTrack predictions of the stochastic gravitationnal-wave background from compact binary coalescences | Carole Perigois     |
|       | Centre Moulin Mer                                                                                       | 14:30 - 15:00       |
| 15:00 | Using simulated quasar catalogs for the BAO in lyman-\$\alpha\$ analysis of eBOSS and DESI              | Julianna Stermer    |
|       | Centre Moulin Mer                                                                                       | 15:00 - 15:30       |