DE LA RECHERCHE À L'INDUSTRIE

Matthieu Vivier Xavier Mougeot Alain Letourneau Davide Mancusi Anthony Onillon

New Evaluation of v Fluxes At Reactors

JRJC 2019 Modeling of reactor antineutrino spectra

Lorenzo Périssé

CEA/Irfu/DPhP CEA-Saclay, IRFU, 91191 Gif-sur-Yvette, FRANCE

24-30/11/2019

The NEVFAR project:

1. Introduction

2. Tools for modeling reactor v

Reactor antineutrino

- Experimental context
- ✤ NEvFAR project

- Fission fragment distribution
- β decay model

3. Preliminary results

Fission spectra

4. Conclusion

1. Introduction

2. Tools for modeling reactor v

3. Preliminary results

Reactor antineutrino

- Experimental context
- ✤ NEvFAR project

- Fission fragment distribution
- β decay model

Fission spectra

4. Conclusion

Pressurized water reactor (PWR)

Reactor antineutrino

- Pressurized water reactor (PWR)
- Fuel = UO_2 (²³⁸U + few ²³⁵U %)

 \geq \geq Pu isotopes by neutron capture on ²³⁸U

> Burnup process

Thermal power: ²³⁵U (54%), ²³⁹Pu (32%), ²³⁸U (8%), ²⁴¹Pu (6%)

• $\overline{\nu}_e$ originate from neutron-induced fissions of ^{235, 238}U and ^{239, 241}Pu isotopes in the reactor core

 \rightarrow A few \bar{v}_e originate from neutron capture on ²³⁸U

Reactor antineutrino

²³⁵U fission and fission fragment decay scheme

- Pressurized water reactor (PWR)
- Fuel = UO_2 (²³⁸U + few ²³⁵U %)

 \geq \geq Pu isotopes by neutron capture on ²³⁸U

> Burnup process

> Thermal power: ²³⁵U (54%), ²³⁹Pu (32%), ²³⁸U (8%), ²⁴¹Pu (6%)

 \overline{v}_e originate from neutron-induced fissions of \bullet ^{235, 238}U and ^{239, 241}Pu isotopes in the reactor core

 \succ A few \bar{v}_e originate from neutron capture on ²³⁸U

Reactor antineutrino

- Pressurized water reactor (PWR)
- Fuel = UO_2 (²³⁸U + few ²³⁵U %)

➤ Pu isotopes by neutron capture on ²³⁸U

> Burnup process

> Thermal power: ${}^{235}U > {}^{239}Pu > {}^{238}U > {}^{241}Pu$

 $\overline{\nu}_e$ originate from neutron-induced fissions of ^{235, 238}U and ^{239, 241}Pu isotopes in the reactor core

 \geq A few $\bar{\nu}_e$ originate from neutron capture on ²³⁸U

~61

Reactor $\bar{\nu}_e$ flu

Core fuel evolution \Rightarrow reactor $\bar{\nu}_e$ spectrum change

$$\overline{\nu}_e$$
 emitted per fission
(X: ~2 × 10²⁰ $\overline{\nu}_e \cdot s^{-1} \cdot GW_{th}^{-1}$

Reactor antineutrino

Inverse Beta Decay (IBD)

$\overline{v}_e + p \rightarrow e^+ + n$

- Pioneered by Reines & Cowan in 1956 ullet
- Time/space correlation of prompt lacksquarepositron and delayed neutron signals
- **Kinematic threshold: 1.8 MeV**
- σ_{IBD} ~10⁻⁴³ cm²

- 2 methods for reactor spectrum modeling Inversion, Schreckenbach (80's) Summation, King & Perkins (1958)
- 2011 : **2 model reviews** of reactor $\bar{\nu}_e$ calculation \Rightarrow New comparison with past experiments

2011 model review (Mueller-Huber) + IBD cross-section revision:

Reactor antineutrino anomaly

Recent experiment question validity of state-of-the-art model due to...:

- Spectral shape anomaly
- Isotopic fuel evolution

<u>Reactor Antineutrino Anomaly (RAA)</u>

- **Systematic deficit** of measured $\bar{\nu}_e$ flux compared to predictions in >20 experiments
- Confirmed in recent experiments ullet
- Ratio flux meas/pred: 0.934 \pm 0.024 (2.7 σ) ullet

Experimental context

• Is it due to...

- ... experimental bias ?
- ... new physics (sterile v)?
- ... model default ?

Experiment to prediction $\bar{\nu}_{\rho}$ flux ratio

- 1. Introduction 2. Tools
 - 3. Results 4. Conclusion

Spectral shape anomaly

•	Observed spectrum distorded	
		1.
		1
		1.
		WC 1
	Tension among different experiments distorsions ➤ Some do not see a distorsion	Data
		atios
		<u>م</u>
		0.
		0
		0.
•	Is it due to	0
	detector effect ?	
	model default ?	10.10

Shape only (normalized) ratio

Isotopic fuel evolution

- Unclear status of the \bar{v}_e flux evolution ulletcomposition (^{235,238}U, ^{239,241}Pu)
 - Daya Bay: predicted slope unco measur. at 3.1 σ (within uncertainty)
 - > RENO: predicted slope **compatible** measur. (within uncertainty)

w.r.t. fuel	 Tension could be explained
	reactor physics at sta
ompatible	bias in experimental i
	model detault ?

by ... ake? uncertainties?

<u>NEvFAR project</u> (New Evaluation of v Flux At Reactor)

Possible misprediction from the model

> lift approximations in the models \succ refine β decay models

- Go back on uncertainty budget > Experimental and model uncertainties
- Evaluate the impact of uncompleteness and quality of nuclear databases Provide updated nuclear decay database
- Provide model below 1.8 MeV

> relevant to coherent elastic neutrinonucleus scattering (CEvNS) experiments

NEvFAR project

Introduction

2. Tools for modeling reactor v

3. Preliminary results

Reactor antineutrino Experimental context * NEvFAR project

- Fission fragment distribution
- β decay model

Fission spectra

4. Conclusion

- Neutron-induced fissions of ^{235, 238}U and ^{239, 241}Pu
 - \succ Fission fragments = neutron rich nuclei
 - \succ Fragments undergo successive β^- decays to reach a stable element

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-} + \bar{\nu}_{e}$$

• Fission ~ random process, you do not get the same fission fragments every time a fission occurs

Fission fragment distribution Bi-modal

- \Box 1 fission = 2 or 3 fission fragments
- \succ Up to 700-800 β decay emitters
- > Fission fragment distributions slightly depends on the fissioning isotope

We can compute the core distribution of β^- emitters at any time

Fission fragment distribution

Inversion method

Inverting an experimental electron fission spectrum using energy conservation at the β branch level

β decay model

Summation method

Fission spectrum of isotope k = sum of thousands β branches from all known branches listed in nuclear databases

$$S_{\beta,k}(E) = \sum_{i} FY_{i} \sum_{j} BR_{ij} S_{\beta}(Z)$$

Fermi theory of β decay

 $S_{\beta}(W) = K C(Z, W) F_0(Z, W) pW(W_0 - W)^2$

Nuclear decay data (ENSDF, ...)

Fission yield data (JEFF, ENDF, ...)

Mueller model of ²³⁸U

Inversion method

Inverting an experimental electron fission spectrum using energy conservation at the β branch level

- Make fission \bar{v}_e spectrum
- Small uncertainties ~2-3%
- State-of-the-art model
- Limited by exp data
- No low energy model
- **Approximations**

Huber model of ²³⁵U, ^{239, 241}Pu

Coulomb function approximation (*e.g.* Fermi function, λ function = 1, ...)

β decay model

- ξ approximation
 - > Some transitions require nuclear structure calculus
 - Non-unique forbidden transition
 - Approximated by transition easier to model (unique forbidden or allowed)

 $S_{\beta}(W) = \frac{K[C(Z,W)]}{F_0(Z,W)} \frac{F_0(Z,W)}{pW(W_0 - W)^2}$

Phase space factor

Counts degenerency of quantum states

Fermi function

Considers electromagnetic interaction

β decay model: β and ν spectra

1st step, make an electron spectrum ; e.g. ¹³¹Sn* (Z=50, A=131), $E_0 = 4.9$ MeV, 1st unique forbidden

Shape factor

Difference between decay types (allowed, forbidden, ...)

Normalization cste

 $\int \mathrm{d}W S_{\beta} = 1$

• *p*: electron momenum W: total energy W_0 : max available energy for the transition • E_0 : max kinetic energy for the transition

ullet

ullet

 $S_{\beta}(W) = \frac{K[C(Z,W)]}{F_0(Z,W)} \frac{F_0(Z,W)}{pW(W_0 - W)^2}$

Shape factor Phase space factor Counts degenerency of quantum states Difference between decay types (allowed, forbidden, ...) **Fermi function** Normalization cste $\int \mathrm{d}W S_{\beta} = 1$ Considers electromagnetic interaction

2nd step, make an antineutrino spectrum

Energy conservation at branch level

 $S_{\nu}(E_{\nu}) = S_{\beta}(E_0 - E_{\beta})$

We know how to make β and v spectra... with many approximations and for a potential due to a point-like nucleus

β decay model: β and ν spectra

1st step, make an electron spectrum ; e.g. ¹³¹Sn* (Z=50, A=131), $E_0 = 4.9$ MeV, 1st unique forbidden

- \bullet
- lacksquare

• *p*: electron momenum W: total energy W_0 : max available energy for the transition • E_0 : max kinetic energy for the transition

 $S_{\beta}(W) = K C(Z, W) F_0(Z, W) pW(W_0 - W)^2$

Shape factor Phase space factor Counts degenerency of quantum states Difference between decay types (allowed, forbidden, ...) **Fermi function** Normalization cste $\int \mathrm{d}W S_{\beta} = 1$ Considers electromagnetic interaction

2nd step, make an antineutrino spectrum

Energy conservation at branch level

$S_{\nu}(E_{\nu}) = S_{\beta}(E_0 - E_{\beta})$

- L_0 : Nuclear deformation, correction to F_0
- D_C : Nuclear deformation, correction to C
- L₀ and D_C computed via **Coulomb functions**

 Home made program DIRAC (Directives for an Improved Result of the Amplitude of Coulomb)

β decay model: β and ν spectra

1st step, make an electron spectrum ; e.g. ¹³¹Sn* (Z=50, A=131), $E_0 = 4.9$ MeV, 1st unique forbidden

- \bullet

electron momenum W: total energy W_0 : max available energy for the transition • E_0 : max kinetic energy for the transition

DIRAC program solves Dirac equation for any nuclear potential defined on a grid

Ļ Some nuclear potential models

- Point-like
- **Finite spherical size**
- Finite size + screening

β decay model: Nuclear model impact

Quantifiable impact on Shapefactor and other parameters (*e.g.* Fermi function)

- Common to S and S': QED + WM
- Model S: Coulomb function $\lambda = 1$ approximation + linear L₀ approx
- Model S': Exact Coulomb function + spherical screened nucleus model

<u>Neutrino spectrum relative difference S vs S' of 50 important isotopes making ²³⁵U fission spectrum</u>

1. Introduction

2. Tools for modeling reactor v

3. Preliminary results

Reactor antineutrino Experimental context NEvFAR project

- Fission fragment distribution
- β decay model

Fission spectra

4. Conclusion

V

3. Results

4. Conclusion

Fission spectrum: Summation spectrum of ²³⁵U

Uncertainty propagation via Monte-Carlo for each modeled transition

- Experimental error sources for each isotope Endpoint and Branching Ratio
- Approximated framework for error propagation (e.g. no covariance found in evaluated nuclear databases for fission fragments distributions, idem for Branching Ratio, ...)
- Propagated to total β and ν spectra

$^{235}U \bar{\nu}_{\rho}$ bin correlation

Uncertainty ~2 % between 1-7 MeV

1. Introduction 3. Results 2. Tools

4. Conclusion

Fission spectrum: Summation spectra

<u>Spectrum with L₀, D_C, QED, WM corrections and cumulative fission yield</u>

Comparable changes for all 4 isotopes in 1-10 MeV Small impact on summation spectra (~0.8% at 8 MeV, $\frac{1}{1000}$ otherwise)

\bar{v}_e /fission $5.90 \pm 1.0\%$ 6.64 ± 1.7% 5.26 ± 1.1% $5.90 \pm 1.5\%$

I. Introduction 3. Results 2. Tools

4. Conclusion

Fission spectrum: Summation spectra

<u>Spectrum with L₀, D_C, QED, WM corrections and cumulative fission yield</u>

Small impact on summation spectra (~1% at 8 MeV, $\frac{1}{1000}$ otherwise)

- D_C only impacts forbidden transitions \geq ~9% of all transitions Not the most relevant ones (low) fission yield)
- L_0 impacts all transitions \succ Former model has L_0 linear approximation

Comparable changes for all 4 isotopes in 1-10 MeV

Introduction

2. Tools for modeling reactor v

3. Preliminary results

Reactor antineutrino Experimental context NEvFAR project

- Fission fragment distribution
- β decay model

Fission spectra

4. Conclusion

We have learned...

- ... about the reason of the NEvFAR project
- ... how reactor fuel evolves with time
- ... the fission fragment distributions of fissile isotopes
- ... how to make β and ν spectra
 - about the set of corrections
 - how to compute some corrections (DIRAC)
 - about the bin covariance matrix

We have improved the summation model...

- ... by improving nuclear model
 - point-like \rightarrow finite size
 - screening of atomic cloud

We can now make a complete reactor spectrum with covariance (but still miss data the fission fragment distribution covariance)

IRFU/Service

Reactor v flux w.r.t. time

- Now we plan to study...

 - \dots exchange effect in β branch modeling
- We will then use the summation model...
 - ... to investigate database completeness
 - ... to check inversion model precision
 - Inversion is state-of-the-art

... correlation of Branching Ratio for error propagation ... include non-unique decays in the calculation (lift ξ approximation) ... comparison with literature, require identical databases

• See how fission spectra evolve through database updates Put an estimation on « database uncertainty »

How precisely can it reproduce a summation spectrum ?

Photo by Christian Veyssière, CEA/Irfu **Double Chooz detector**