

Journée de Rencontres Jeunes Chercheurs (JRJC) 2019

Leading hadronic contribution to the muon magnetic anomaly from lattice QCD

Letizia Parato

CPT & Aix-Marseille Université

November 25, 2019

1 Introduction

- Short history of magnetic moments
- Anomalous magnetic moment in the SM
- **a**_e, a_{μ} and a_{τ} : why is a_{μ} special
- **E**xperimental measurement of a_{μ}

2 Lowest orderd hadronic vacuum polarisation

- $a_{\mu}^{\text{lo-hvp}}$ from R_{γ} -ratio a_{μ}^{HVP} on the lattice
- - What is lattice QCD
 - Lattice definition of $a_{\ell f}^{\text{LO-HVP}}$
 - Continuum extrapolation, cuts and errors
- State of the art

Introduction

Please welcome...

$$a_\ell = \frac{g_\ell - 2}{2}$$

Introduction

Short history of magnetic moments

• Leptons ℓ have magnetic moments $\vec{\mu}_{\ell}$ due to their spin $\vec{s} = \hbar \frac{\vec{\sigma}}{2}$

• Pauli equation (g was initially left as free parameter)

$$i\hbar\partial_t\phi(x) = \left[\frac{1}{2m_\ell}\left(-i\hbar\vec{\nabla}-\frac{\mathbf{e}_\ell}{c}\vec{A}\right)^2 - g\frac{\mathbf{e}}{2m_\ell c}\vec{s}\cdot\vec{B} + \mathbf{e}_\ell A_0\right]\phi(x)$$

Dirac eq. for a $\frac{1}{2}$ -spin particle interacting with electromagnetic field $A_{\mu}(x)$

$$i\hbar\partial_t\psi(x) = \left[ec{lpha}\cdot\left(crac{\hbar}{i}ec{
abla}-eec{A}
ight)+eta c^2m_\ell+e_\ell A_0
ight]\psi(x)$$

Let
$$\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$
: Dirac eq. $\frac{E \sim mc^2}{v \ll c}$ Pauli eq. $\Leftrightarrow g = 2$
 $g|_{\text{Dirac}} = 2$

Kinster and Houston (1934): 1st exp. confirmations of Dirac's prediction $g_e = 2$.

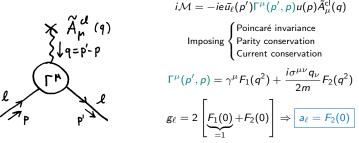
Introduction

Short history of magnetic moments

• Kusch and Foley (1948): $g_e = 2.00238(10)$

$$a_e^{\exp(1948)} = \frac{g_e - 2}{2} = 0.00119(5)$$

 Meantime renormalization was developed in QED to make sense of infinite integrals in perturbation theory.

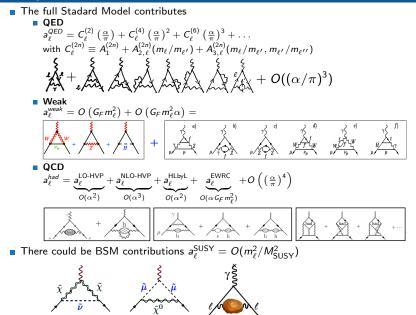


- a_ℓ is adimensional
- \blacksquare a_ℓ comes from loops but it's UV-finite once fields, charges and masses have been renormalized
- Schwinger (1948) evaluates the lowest order QED contribution to a_e

$$a_e^{(1) {\sf QED}} = rac{lpha}{2\pi} pprox 0.0011614$$
 (99% of the anomaly)

- Introduction

Anomalous magnetic moment in the SM



Introduction

 \Box_{ae} , a_{μ} and a_{τ} : why is a_{μ} special

- $ho~a_e^{exp} = 11596521.8073(28) imes 10^{-10}$ [D. Hanneke, S. Fogwell, G. Gabrielse (2008)]
 - $\tau_e = \infty, m_e = 0.511 \text{ MeV}$
 - Dominated by QED effects up the 0.66 ppb precision level: sensitivity to hadronic and weak effects as well as to physics beyond SM is tiny.
 - a_e is known 829 more precisely than a_μ
 - Provides best measure of $\alpha = 137.035999046(27)$ [Parker, Yu, Zhong, Estey, Muller (2018)]

■
$$a_e^{\exp} - a_e^{SM} = -0.0087(28)^{\exp}(23)^{\alpha}(2)^{SM} \times 10^{-10} \rightarrow -2.4\sigma$$
 discrepancy

$$\triangleright \mathbf{a}_{\tau}^{\text{exp}}$$

• $\tau_{\tau} = 3 \times 10^{-15} \text{s}, m_{\tau} = 1777 \text{ MeV}$

Very short lived \Rightarrow no measurements yet

\triangleright $\mathbf{a}_{\mu} = 11659208.9(6.3) \times 10^{-10}$ [BNL '04]

■ latest measurement from experiment Muon E821 at BNL (final report issued in 2006)

•
$$au_{\mu} = 2 \times 10^{-6} \text{s}, m_{\mu} = 105 \text{ MeV}$$

• $m_{\mu}^2/m_e^2 \approx 205^2$ times more sensitive to physics BSM.

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 27.9(6.3)^{exp}(3.6)^{lpha}(2)^{SM} imes 10^{-10} o 3.6\sigma$$
 discrepancy

To match the future experimental precision:

- $1 \Delta a_{\mu}^{\text{hvp}}/a_{\mu}^{\text{hvp}}$ is now 0.5% (R-ratio) or 2 3% (LQCD), must reach 0.2%
- 2 $\Delta a_{\mu}^{\rm [b]}/a_{\mu}^{\rm [b]}$ is now 20%, must reach 10%

Introduction

 \Box Experimental measurement of a_{μ}

Two experiments aim to reduce precision of a_{μ}^{exp} to 0.14 ppb

- Muon g-2 at Fermilab (operative since 2017)
- Muon g-2/EDM at J-PARC (planned for \geq 2020)

A muon in a \perp magnetic field experiences two frequencies (here $\vec{\omega} \parallel \vec{B}$):

1.
$$\omega_C = \frac{eB}{m_\mu c\gamma}$$
 (circular precession)
2. $\omega_S = g_\mu \frac{eB}{2m_\mu c} + \frac{1-\gamma}{\gamma} \frac{eB}{m_\mu c}$ (spin precession)
 $\Rightarrow \omega_a = \omega_S - \omega_C = a_\mu \frac{eB}{m_\mu c}$

Also \vec{E} contributes to $\vec{\omega}$:

$$\vec{\omega} = a_{\mu} \frac{e\vec{B}}{m_{\mu}} - a_{\mu} \frac{\gamma}{\gamma+1} (\vec{\beta} \cdot \frac{e\vec{B}}{m_{\mu}}) \vec{\beta} + \underbrace{\left(-a_{\mu} + \frac{1}{\gamma^{2}+1}\right)}_{0 \text{ at } \gamma_{\text{magic}} (\text{FNAL})} \underbrace{\frac{\vec{\beta} \times \vec{E}}{\vec{E}}}_{\vec{E} = 0 \text{ (J-PARC)}} \frac{e}{m_{\mu}}$$

Muons decay preferentially in the spin direction: each detector will measure

$$N(E, t) = N_0(E)e^{-t/\gamma\tau_{\mu}} \left[1 + A(E)\cos(\omega_a t + \phi)\right]$$

Lowest orderd hadronic vacuum polarisation

 $a_{\mu}^{\text{lo-hvp}}$ from R_{γ} -ratio

$$a_{\mu}^{\text{LO HVP}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} w \left(Q^2/m_{\mu}^2\right) \underbrace{\left(\Pi(Q^2) - \Pi(0)\right)}_{\hat{\Pi}(Q^2)}$$

$$w\left(Q^{2}/m_{\mu}^{2}
ight) = \pi\left(r+2-\sqrt{r(r+4)}
ight)^{2}/\sqrt{r(r+4)}$$

– How can I get $\hat{\Pi}(Q^2)$? –

For now the **R-ratio** gives the best extimation of a_{μ}^{hvp} :

Using a dispertion relation to rewrite

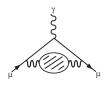
$$\hat{\Pi}(Q^2) = \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{1}{\pi} \mathrm{Im}\Pi(s)$$

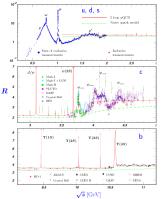
2 replacing Im Π with $\sigma(\gamma \rightarrow had)$ via optical theorem:

$$2 \operatorname{Im} \sim \operatorname{had.}_{had.} \int d\Phi \left| \sim \left| \right|^2$$

I taking from experiments (BaBar, KLOE,...) the R-ratio

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to \text{had}, s)}{\sigma(e^+e^- \to e^+e^-)} = \frac{\sigma(e^+e^- \to \gamma^* \to \text{had}, s)}{\frac{4\pi\alpha^2}{35}}$$
$$\hat{\Pi}(Q^2) = \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{R(s)}{s(s+Q^2)}$$





Lowest orderd hadronic vacuum polarisation a_{i}^{HVP} on the lattice

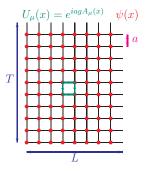
Lattice QCD

1974: K. Wilson needed a framework to explore the confined phase of QCD. Recipe:

- **1** Lattice = euclidean tool $\Rightarrow t \rightarrow -ix_4$
- 2 Discretize spacetime on lattice Λ of size $L^3 \times T$ and spacing a
 - \Rightarrow IR and UV divergences are now regularized
- 3 Define discretized equivalents of continuum fields
 - $\phi(t, \vec{x}) \rightarrow \phi(x)$ with $x = a(n_1, n_2, n_3, n_4)$
 - $A_{\mu}(x) \rightarrow U_{\mu}(x) = P\{\exp\int_{x}^{x+a\hat{e}_{\mu}} ds A_{\mu}(s)\}$

$$S_W = \frac{\beta}{2N} \sum_{x \in \Lambda, \mu\nu} \operatorname{ReTr} \{ U_{\mu\nu}(x) \} \xrightarrow{a \to 0} -\frac{1}{4} \int d^4 x F_{\mu\nu} F^{\mu\nu}$$

 $Tr\{U_{\mu\nu}(x)\} = Tr\{U_{\mu}(x)U_{\nu}(x+a\hat{e}_{\mu})U_{\mu}^{\dagger}(x+a\hat{e}_{\nu})U_{\nu}^{\dagger}(x)\}$ is the elementary plaquette. The equivalence holds iff $\beta = \frac{2N}{\pi^2}$



Lowest orderd hadronic vacuum polarisation $\square_{a}HVP$ on the lattice

Lattice QCD

5 The QFT partition function

$$\mathcal{Z} = \int \mathcal{D} A_{\mu} \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{i \left[\mathcal{S}_{\mathcal{G}} + \int \bar{\psi} \mathcal{D}[M] \psi
ight]} = \int \mathcal{D} A_{\mu} \det(\mathcal{D}[M]) e^{i \mathcal{S}_{\mathcal{G}}}$$

becomes on the lattice

$$\mathcal{Z} = \prod_{\rho, x} \int dU_{\rho}(x) \det(D_{x}[M]) e^{-\frac{\beta}{2N} \sum \operatorname{ReTr} U_{\mu\nu}}$$

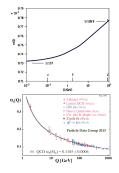
Looks like the partition function of a statistical system in the canonical ensemble

 \Rightarrow new tools from Statistical Mechanics, like stochastic methods (MC, ...) to perform numerical evaluations.

6 Asymptotic freedom implies $a \xrightarrow{g \to 0} 0$!

$$\begin{cases} \alpha_s(a) = \frac{g^2(a)}{4\pi} = -\frac{4\pi}{b_0 \log(a^2 \Lambda^2)} \\ b_0 = 11 - \frac{2}{3}n_f \end{cases} \Rightarrow a(g) \sim \frac{1}{\Lambda} \exp\left(-\frac{8\pi^2}{b_0 g^2}\right)$$

- **T** Fix QCD parameters using $1 + n_f$ physical inputs.
- \blacksquare Restore $\infty\text{-volume}$ by extrapolation from simulations in different volumes.



Lowest orderd hadronic vacuum polarisation $\Box_{a_{II}}^{HVP}$ on the lattice

Lattice definition of $a_{\ell f}^{\text{LO-HVP}}$

I Form R-ratio we know that $\Pi(Q)$ is peaked on $m_{\mu}/2 \sim 50 \text{MeV} \Rightarrow \text{NP}$ regime In Euclidean space the polarization tensor is

$$\Pi_{\mu\nu}(Q) = \int d^4 x e^{iQ \cdot x} \langle J_{\mu}(x) J_{\nu}(0) \rangle \quad \leftarrow \text{ measurable on the lattice}$$
$$= \underbrace{\left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2\right) \Pi(Q^2)}_{O(4) \text{ inv. and current conservation}} \leftarrow \text{ what we need}$$

with $J_{\mu}/e = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \cdots$

3 We define

$$\begin{split} C_L(t) &= \frac{a^3}{3} \sum_{i=1}^3 \sum_{\vec{x}} \langle J_i(x) J_i(0) \rangle \\ &= C_L^{ud}(t) + C_L^s(t) + C_L^c(t) + C_L^{\text{disc}}(t) = C_L^{l=0}(t) + C_L^{l=1}(t) \end{split}$$

where $C_{I}^{ud}(t), ...$ correspond to different Wick contractions:

quark-connected (qc)

Lowest orderd hadronic vacuum polarisation \square_{a}^{HVP} on the lattice

 $N(t,m_{\mu}) C_{ud}(t) \times 10^{10} [fm^{-1}]$

400

300

200 100

> 0 ٥

1

2

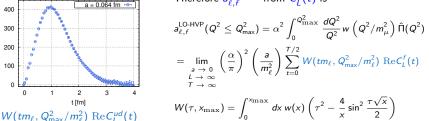
t [fm]

Lattice definition of a LO-HVP

I Performing a Fourier transformation and subtracting $\prod_{\mu\nu}^{L}(Q=0) \neq 0$ (which gives a FV contribution $\propto L^4 \exp(-EL/2)$), we get the connection between $\hat{\Pi}_{l}^{f}(Q^{2})$ and $C_{l}(t)$:

$$\hat{\Pi}_{L}^{f}(Q^{2}) \equiv \Pi_{L}^{f}(Q^{2}) - \Pi_{L}^{f}(0) = \frac{1}{3} \sum_{i=1}^{3} \frac{\Pi_{ii,L}^{f}(0) - \Pi_{ii,L}^{f}(Q)}{Q^{2}} - \Pi_{L}^{f}(0) = 2a \sum_{t=0}^{T/2} \operatorname{Re}\left[\frac{e^{iQt} - 1}{Q^{2}} + \frac{t^{2}}{2}\right] \operatorname{Re}C_{L}^{f}(t)$$

Therefore $a_{\ell f}^{\text{LO-HVP}}$ from $C_{\ell}^{f}(t)$ is



5 Finally, adding using pQCD for $Q > Q_{max}$ (blue=measurable on the lattice) $a_{\ell f}^{\text{LO-HVP}} = a_{\ell f}^{\text{LO-HVP}}(Q \le Q_{\text{max}}) + \gamma_{\ell}(Q_{\text{max}}) \hat{\Pi}^{f}(Q_{\text{max}}^{2}) + \Delta^{\text{pert}}a_{\ell,f}^{\text{LO-HVP}}(Q > Q_{\text{max}})$

Lowest orderd hadronic vacuum polarisation

 $\Box_{a_{II}}^{HVP}$ on the lattice

Continuum extrapolation: fit, systematic and statistical errors

 Large t ↔ large statistical error Have implemented many improvements to reduce statistical error.

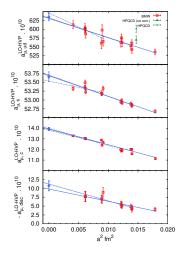
Ex: signal is lost for $t \gtrsim 3 \,\mathrm{fm}$ for $C^{ud/\mathrm{disc}}(t)$ $\Rightarrow C_L^f(t > t_c)$ is replaced by the average of its upper and lower bounds.

• Many possibilities for interpolation to ϕ_{m_q} and for continuum extrapolation (adjustments in the fit model)

 \Rightarrow systematic error

- **1** Vary t_c ($t_0 = (3 \pm 0.134)$ fm, $t_0 = (2.600 \pm 0.134)$ fm).
- 2 a-cuts (no cut, 0.118 fm, 0.111 fm, 0.095 fm).
- **3** Q-cuts ($Q_{max}^2 = 1, \dots, 5 \, \text{GeV}^2$).
- 4 There are 4 external inputs: w₀, m_π, m_ρ, m_{η_c}. Each ensemble has a different set of inputs: the masses are chosen to be around their physical value. In the fit we can choose i_π, i_π, i_η = 0, 1.
- 5 Choice of Padé approximant.

$$y(a^{2}, m_{\pi}^{2}, m_{K}^{2}, m_{\eta}^{2}) = \operatorname{cnt} \frac{1 + \sum_{i=1}^{n_{p}} \operatorname{cp}_{i} a^{2i}}{1 + \sum_{i=1}^{n_{q}} \operatorname{cq}_{i} a^{2i}} + i_{\pi} c_{\pi} \Delta m_{\pi}^{2} + i_{K} c_{K} \Delta m_{K}^{2} + i_{\eta} c_{\eta} \Delta m_{\eta}^{2}$$



Lowest orderd hadronic vacuum polarisation

State of the art

Comparison of a_{μ}^{hvp} obtained by between different collaborations

- "No New Physics" scenario: = $(720 \pm 7) \times 10^{-10}$
- BMWc '17 consistent with "No new physics" scenario & pheno.
- Total uncertainty of 2.7% is $\sim 6 \times$ pheno. err.
- Need to reduce our error by 10!
 - \rightarrow Increase statistics by $\times 50 \div 100$ (need new methods)
 - \rightarrow Understand and control FV effects much better
 - → Compute QED and $m_d \neq m_u$ corrections (see RBC/UKQCD '17-'18, ETM '17)
 - $\rightarrow~$ Need high precision scale setting
 - $\rightarrow\,$ Detailed comparison to phenomenology to understand where we agree and why if we don't
 - → Combine LQCD and phenomenology to improve overall uncertainty (RBC/UKQCD '18), only if the two agree statistically with comparable errors

