Instrumentation in Particle Physics:
a bit of history and bit of intro

Sabrina Sacerdoti
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The "atom structure” era

Visible signals induced by many
particles

Particle sources:

» Cathode tubes
» Radioactive elements

Magnetic field >
— sign of charge,

Electric filed — milikan experiment
Detection methods:

> photographic plates
> jonization chambers

Michael Hauschild- CERN, 11-May-2009, page 2
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Single Particle Detection:

Sources: cosmic rays, nuclear reactors,synchrotrons ---> accelerators
Technology: cloud chamber, photomultipliers, bubble chambers --> image analysis
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Bubble C/ha_

/S

Cloud Chambers

o A

Nuclear Emulsion

o4

> Superheated heavy liquid

o > charged particles leave a
» Originally developed for trail of ions,
climate studies
> vapour forms around the
> Supersaturated vapour

i ions
condenses due to the e i G X >
passage of a charged ' (Y x Large volume
particle KIS bl T DI A > resolution of few um
> Provides "amplification” of > weak neutral currents -
a single particle effect 1973

— Mostly based on image analysis
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What do we (usually) need in a particle physics
experiment?

> A source of particles

> A medium with which the particles will interact
— and understanding of the possible interactions

> A data aquisition system

7128



Particle sources

» radioactive sources
> cosmic rays

> nuclear reactors

> accelerators

8/28



What do we want to measure?

Out of the huge zoo of known particles...

Standard Model of Elementary Particles

> Only 27 have a lifetime @GeV

= = K°, K energies such that cr > pm
K K
» There are 13 that a detector should
e measure:
K*“ K*
K, K" e+ K*
7 p*
v K°
T n

To be characterized by their mass, momentum, energy, charge...
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Interactions

» Charged particles:
ionisation,bremsstrahlung,Cherenkov
— multiple interactions

> Photons: photoelectric/Compton effect,
pair production
— single interaction

» Hadrons: nuclear interactions
— multiple interactions

» Neutrinos: weak interaction
— maybe interactions

The difference in mass, charge and type of
interaction is key when trying to identify them!

Radiation length (Xp): distance after which an
incident electron’s energy is 1/e

Bethe-Bloch formula: energy loss
by ionisation
Energy loss of 7 in C,
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Magnetic field

Charged particles are deflected in a
magnetic field
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Magnetic field

Charged particles are deflected in a
magnetic field

F-qvx8

> If m~ 0, for constant B

> then |ﬁ| is constant (assumption: no
energy loss in the detector)

» helical trajectory

> Measure 3 points
— 0s = 4/3/20y

0 opr . 9yPT
pr Nhits
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ISIton

Data Aqu

> be able to recognise the interaction

» and record it!

i.e. silicon detectors and

(

> The development of the electronics is key

)

ASICs
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ASIC die and TDC diagram

TPC continuous signal readout
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Detectors today...

Combine different technologies to measure the path and energy of the
particles

Neutrino

Proton
¢
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Detectors today...

Combine different technologies to measure the path and energy of the
particles

ATI AC

http://atlas.ch

The tracker and muon spectrometer measure the momentum of passing
charged particles - not modify particle’s path and energy
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Detectors today...

Combine different technologies to measure the path and energy of the
particles

ATI AC

http://atlas.ch

The calorimeters try to stop the particle to measure it's energy - destructive
measurement
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Detectors today...

Combine different technologies to measure the path and energy of the
particles
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Types of detectors

GASEOQUS IONISATION
CHAMBERS

IONISATION GEIGER-MULLER SPARK
COUNTER TUBE CHAMBER

MULTI-WIRE
CHAMBER

HERMETIC
DETECTORS

PROPORTIONAL
COUNTER

MULTI-WIRE
PROPORTIONAL
CHAMBER

|

DRIFT
CHAMBER

TIME
PROJECTION
CHAMBER

SOLID STATE
DETECTORS
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Gas Detectors

Basic principle:

> A charged particle transverses a WE

carefully chosen gas/gas mixture e .
> enclosed within en electric field £ aectrjl @E
> gas is ionised by the particle field -

» generated charges drift towards _
cathode/anode Cathode

» measure current!

a~ —-o
Lo

,s\
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Gas Detectors

Geiger-Muller

>

vV VvVvyVvyy

Main (well known) use: detect presence of radiation

~ 0.1 atm gas —/
High V, several hundred volts — high electric field n
gas multiplication (scattered e~ and UV photons) g
Gives one pulse per incident particle

No energy measurement — no particle ID

lonization Chambers

vV vyyywy

MicroMegas
/

w1

No multiplication (only direct ionisation)
Small current signal: ~ 1072 — 107" A
Can measure total ionisation

Achieve spatial resolution through smart
design/placement of electrodes

MicroMegas, Gas Electron Multiplier,
Resistive Plate Chambers
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Gas Detectors

Proportional Counters

> Pulse height o radiation absorbed by Drift Chamber

the detector .

]

t
AAA
H_‘T P

Amplifier Discriminator

» Gas mixture of inert gas (to be
ionised) and quenching gas (to )
terminate the pulse) w

> Relatively low E: no recombination,
avalanche only close to electrode
— single avalanche per generated ion

Particle position deduced from the wire position
and time of the pulse

» Many of these detectors used currently in LHC experiments:
TRT, MDT,RPC,CTC,TGC

» Most of these have o ~ 100um
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Semiconductor Detectors
It is, basically, the same idea as before, but a lot more expensive...

> A charged particle transverses a
semiconductor material

electrons
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Semiconductor Detectors

It is, basically, the same idea as before, but a lot more expensive...

> A charged particle transverses a
semiconductor material
Semiconductor:

> A crystal, like silicon, diamond,

germanium

> different dopings control the 00 L0080,
conductivity - 385l

> n-type: excess of electrons R ,T_‘f*
p-type: excess of holes ERTME fei

> n-p junctions — rf__q
transistors/diodes |
> light emission

> .. basically, the basis of a new
technological era
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Semiconductor Detectors

It is, basically, the same idea as before, but a lot more expensive...

> A charged particle transverses a
semiconductor material

» Placed between electrodes, so

that the electrons/holes generated
drift due to the electric field
W 3844,
> A pulse can be measured - .. qe
Shockley-Ramo theorem 00" 3308 sloctions
i=E,qv ff 1
» The number of e/h pairs created is =

proportional to the intensity of the
incident radiation; the E
necessary per pair is well known
(eg 3.6 eV in silicon)

» Used in almost all HEP experiments for tracking in the innermost layers

> Price noticeably decreased throughout the years, combined with enough R&D,
allowed to export this technology to the real world (medical imaging)
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Silicon Detectors

>

CRVAS 0 LS O/ CIVA LA
- O/
V bias C%) .
) @ » p++
v

» Example n-on-p silicon detector
> Inversely polarised by a bias voltage — creates a depleted volume

> A charged particle crossing the sensor will create e/h pairs, which travel towards
the electrodes

> N(e/h) pairs depends on the type and energy of incident particle, and the
thickness of the sensor

> Excellent spatial resolution
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Pixel / Strips

Silicon Strip module Piel

carbon fce
support

» The resolution is given by the layout of
fine pitch (50 um) bump placements
electrodes ,

solder
» 2D vs 3D tracking
> Pixels:

»> small area: low C, good S/N
> small vol: low leakage current

Provide high precision tracking (vertex reconstruction) and momentum
spectroscopy in large areas
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Resolution Dead

Detector Type Accuracy (rms) Time Time
Bubble chamber 10-150 pm 1 ms 50 ms®
Streamer chamber 300 g 2 us 100 ms
Proportional chamber 50-300 pm®>>? 2 ns 200 ns
Drift chamber 50-300 pm 2 ns* 100 ns
Scintillator — 100 ps/n’ 10 ns
Emulsion 1 pm — —
Liquid Argon Drift [Ref. 6] ~175-450 pm  ~ 200 ns ~ 2 us
Gas Micro Strip [Ref. 7] 30-40 pm < 10 ns —
Resistive Plate chamber [Ref. 8] <10 pm 1-2 ns —
Silicon strip pitch/(3 to 7)Y h h
Silicon pixel 2 pm’ h h

 Mubtiple pulsing time.

* 300 pum is for 1 mm pitch.

© Delay line cathode readout can give £150 ym parallel to anode wire.

cing/v/12.
) is obtained for small-pitch detoctors (<25 jm) with
b hedght-weighted center fnding,
A Limited by the readout cleetronies [9]. (Time resolution of < 25 ns is planned for
the ATLAS SCT.)
' Analog readout of 34 gm pitch, monolithic pixel detectors.

*the readout electronics can limit the performance!
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Tracker and Calorimeter

So far we’ve seen detectors that measure the passage of a particle..
But only for charged particles

ATI AC

http://atlas.ch

Combining many of the previous detectors we form a track, the path of the
particle through the detector
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Tracker and Calorimeter

So far we’ve seen detectors that measure the passage of a particle..
But only for charged particles

ATI AC

hitp://atlas.ch

But what if we want to measure everything?
(or at least decently interacting charged and neutral particles)
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EM shower

> An EM shower develops within de calorimeter, the energy of the incident
particle is transferred to the generated e*/~ and v

> The number of cascade particles generated is proportional to the energy
deposited by the incident particle

> it continues until E < E; (depends on the material)

» Radiation length (X°) distance after which the incident e~ has irradiated
63% of its energy
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Calorimeters

> Idea from thermodynamics:

> ’adiabatic volume’ (not loose energy)
> Aim to collect all the energy of the particle (charged and neutral)
> destructive measurement: no particles come out, except neutrinos and

muons
> fun fact: the sensitivity required is ~ 10° times larger than to measure a 1°C

shift in 1g of water

Types of particles Types of calorimeters
» Electromagnetic » Homogeneous
» Hadronic » Sampling
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Homogeneous/Sampling

Homogeneous

7

Sampling

All the energy is deposited in the active medium

So the same material needs to stop the particle and generate a signal
Heavy active material: lead tungstate PbWO (CMS calorimeter)
Excellent energy resolution

vV VvVvyVvyy

No longitudinal segmentation
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Homogeneous/Sampling

Homogeneous

T

Sampling

» Heavy stopper/absorber material (Cu, Pb, Fe)

» Sampled by an active material (scintillator plastic, semiconductor, gas)
> Limited energy resolution

» But gives information of the longitudinal deposition of the energy
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EM and Hadronic calorimeters

Different concepts for different particles:
» EM : LAr as active material, Pb/Steel absorber, thin electrodes collect the signal
» TileCal: scintillator plastic as active material, F. absorber.
WS fibres take light towards PMTs
> Calibration: necessary to have a beam of known particles.
» Response to the EM and non-EM part of the shower is different, e/h degree of
non-compensation

Scinllating _y,
s
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|
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EM and Hadronic calorimeters

Different concepts for different particles:
» EM : LAr as active material, Pb/Steel absorber, thin electrodes collect the signal

» TileCal: scintillator plastic as active material, F. absorber.
WS fibres take light towards PMTs

> Calibration: necessary to have a beam of known particles.

> Response to the EM and non-EM part of the shower is different, e/h degree of
non-compensation
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Conclusions

» Not very exhaustive basics of particle detectors'
» Skipped Cherenkov detectors, photomultipliers, and many other topics
> Mostly biased towards LHC experiments...

> But we got the basics:

> key elements in a particle detector
> some gaseous detectors
> some solid state detectors

> Now lets hear your talks!

'Disclaimer: lots of material and pictures taken from Wikipedia, |. Winteger's CERN summer

school lectures, papers, etc.. .
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