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Theoretical motivation
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Experimental motivation



New Physics at the LHC

There are many different ways to access New Physics (NP) with the
ATLAS detector. They can be classified as:

Direct searches Indirect searches

Direct searches for new particles, which Precision measurements of known processes in
would be detected as resonances search for small deviations with respect to the

4 Standard Model (SM)
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Resonances: peaks in the measured cross-section as a function of the mass of the outgoing particles.
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Why very-low mass resonance searches at the LHC?

Why the diphoton channel?
Existing resonance searches performed in the

vy channel cover low ( from 65 GeV up to 125
GeV ) and high (above 125 GeV up to 4.5 TeV)

mass regions.

e Clear signature of two
Isolated and energetic
photons

* Very good photon energy

e All searches in agreement with SM .
resolution

predictions.

Unexplored region!
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ATLAS - CMS comparison
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ATLAS - CMS comparison

Both experiments have ATLAS m,, : [65,110] GeV
results published for low CMS m:j: [70,110] GeV

and high mass ranges. S . A— 39f (5 Te
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Experimental setup: the ATLAS detector



The ATLAS detector

Multipurpose particle
physics detector

Photon reconstruction
makes use mainly of the
EM calorimeter +
additional information
o from the hadronic and
larhadronicend-capand — [NEI detector.

forward calorimeters

25m

Pixel detector
LAr Electromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor fracker

Detector USGfUl Variab|eS

[ e

Er = transverse energy.

e p maes 0 Commonly used in proton
\ j re  n=—log| tan <5> colliders.
N\ s comrorne, | Ps€UdO-rapidity E,= \/ E2 + E?
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Electromagnetic calorimeter

e Sampling electromagnetic ;

calorimeter measures the energy ™ .

loss by photons and electrons as
they interact with matter.
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Photons in ATLAS



Photon reconstruction and energy calibration

Particles going through the detector deposit energy in _  »  aXivi908.00005
the calorimeter cells e PSRV
e Collections of cells are clustered together. Y e
Match clusters to tracks " ool 2
e Distinguish electrons from unconverted photons. 04E g
Match track to secondary vertex " E
» Distinguish electrons from converted photons 21102__
g . 51 e St o % SOOI e e E

Photon conversion O'io‘ OIS |

o . .
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O

Q’\Q;
incident photon (1) A/ second layer

® AnxAp=0.025%0.0245

nucleus .
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», @x :
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W
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\ . ; - BiE Ry
oz !} EHE
SCT \ :

N *." eProbabilityHT mmwm

. r
electromagnetic ,-*| !
calorimeter .°

beam axis pixels

beam spot

insertable b-layer

Energy obtained by summing
the energy of the cells in the
cluster

e Energy is calibrated to
obtain the original energy of
the electromagnetic particle

Edata — EMC(1 + ai)
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Photon identification

Electromagnetic
shower development
almost identical for
any photon.
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Photon identification

Electromagnetic
shower development
almost identical for
any photon.

Photon identification

uses
to identify

photons

November 30th , 2019
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Photon identification

Electromagnetic
shower development
almost identical for

any photon.
Photon identification
uses Variables that
to identify characterize a photon
photons shower longitudinal

and lateral profile.

: s\__/——\A Es:
J1=
ESI ““ ETot.
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Photon identification

T T | T T T T | T T T T | T T T T T T T T
_ ATLAS Simulation —— Signal

Electromagnetic Different sets of cuts € [ A7Las simuiaton — a1
shower development  provide good separation 5| xc-e.socev.ooacos S
almost identical for betweene/y and QCD 5 | '
any photon. background oot
Photon identification _ ;
USes Variables that TR ey
to identify characterize a photon | [ T

. - 0.5 0.6 . . o

photons shower longitudinal arXiv:1902.04655 PR

and lateral profile.

I

~

©-

o &
Lin
XN

w
| 11 1]
H111H
[ -6

LPNHE ATLAS November 30th , 2019


https://arxiv.org/abs/1902.04655

Photon identification
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almost identical for betweene/y and QCD 5 | '
any photon. background " 001
Photon identification _ :
uses Variables that TR ey
to identify characterize a photon | | e

. . 0.5 0.6 : : 9

photons shower longitudinal arXiv:1902.04655 i A,
and lateral profile. S
Example of y/n0 discrimination
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S2 mmm
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High granularity of the detector plays a crucial role in photon ID.
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[ _E'-E
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Ej
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Photon isolation

Photon isolation is applied on top of photon ID to further
suppress backgrounds.

Photon isolation helps to suppress fakes ( like 0 — yy )
and bremsstrahlung photons as the around
them is higher than for prompt photons

Estimated using information from
the calorimeters and the tracker.

/ Prompt

LPNHE ATLAS JRJC

/ Fake
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Photon isolation

Photon isolation is applied on top of photon ID to further

suppress backgrounds. min (4. k)
Photon isolation helps to suppress fakes ( like 0 — yy ) ﬂ'
and bremsstrahlung photons as the around !
them is higher than for prompt photons ! &
Estimated using information from . . ! 4»
Track isolation energy: sum of \WAE |

the calorimeters and the tracker.

the energy of the tracks
around the photon

/ Prompt / Fake
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Photon isolation

Photon isolation is applied on top of photon ID to further

suppress backgrounds. min (4. k)
Photon isolation helps to suppress fakes ( like 0 — yy ) ﬂ'
and bremsstrahlung photons as the around !
them is higher than for prompt photons ! &
Estimated using information from . . | 4»
Track isolation energy: sum of u\ [ |

the calorimeters and the tracker.

the energy of the tracks
around the photon

Calorimetric isolation energy: sum of

energy deposits around the photon /V\
Leakage

Photon - 1 / 2

.

Noise

/ Fake
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Analysis strategy in a nutshell
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.
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— Signal

. Full Run2 dataset

~ available for this

- analysis: 139 fb- i
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!

- Difficult analysis on the edge of
performances (tons of butter needed

Full Run2 dataset
available for this
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!

- Difficult analysis on the edge of
performances (tons of butter needed

Il.Selection of events with two photon

. . ; i . 1000—;"' II‘II-lrolyldlatlalseltlll
candidates to build the my, distribution.

----- Background
— Signal + Background
— Signal

800

600

Events / (0.6 GeV )

400

Full Run2 dataset
available for this
analysis: 139 fb-1
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o

50 60 70 80 90 100
m,, (GeV)
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!

- Difficult analysis on the edge of
performances (tons of butter needed

Il.Selection of events with two photon

Full Run2 dataset
available for this
analysis: 139 fb-1

200

| | Lt > 1000 . Toydataset -
candidates to build the m,, distribution. ¢ V- Background -
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I11.Signal and background modelling S — Signa :
§ 600 -
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!
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performances (tons of butter needed
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!

- Difficult analysis on the edge of
performances (tons of butter needed

Il.Selection of events with two photon

. . ; i . 1000—;"' II'II'erIyIdétlalseltlll
candidates to build the m,, distribution.
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e Fit to data using both signal and 400
background models.
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Analysis strategy in a nutshell

“Bump” search strategy: event excess
over a smoothly falling background in
the m,, distribution.

|. Supply your analysis team with several
Kouign-amann!!

- Difficult analysis on the edge of
performances (tons of butter needed)

Il.Selection of events with two photon

. . ; i . 1000—;"' II'II'erIyIdétlalseltlll
candidates to build the m,, distribution.

----- Background
— Signal + Background
— Signal

I1l.Signal and background modelling

\ Siatstica anaiysis|JERMERSSS——

e Fit to data using both signal and 400
background models.
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Full Run2 dataset
available for this
analysis: 139 fb-1
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e Search for excesses and put limits if
necessary 9
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Event selection: first step towards low masses

Diphoton event candidates (recorded events passing photon ID) are used
to build the invariant mass distribution of the diphoton pair.

Preliminary event selection:
*Pr,,Pr, >25GeV

e Pass diphoton trigger

e Photon identification and isolation

Two key ingredients for reaching low invariant masses kinematically:

e |Low energy photons PT n PTy2

* Angular distance between photons ARWQ

m,, = \/ 2PT,7,1PT,},2 (COSh(Ar]) — COS(A¢)) ~ ARMZ\/ PT,},IPT,},2
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Experimental limitations: how low can we go in my,?

Three main aspects set a lower bound in the mass that can be reached.
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Experimental limitations: how low can we go in my,?

Three main aspects set a lower bound in the mass that can be reached.

e Performance efficiencies

Photon ID and
Isolation efficiencies
decrease at lower
photon energies

LPNHE ATLAS

&)

8Data/gMC

1

A

Ref fig01

n |<1.37, 1.52<n |<2.37, unconverted y

FixedCutLoose isolation
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i E
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November 30th , 2019


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/EGAM-2018-007/fig_01.png

Experimental limitations: how low can we go in my,?

Three main aspects set a lower bound in the mass that can be reached.

e Trigger

QCD rate of two low energy
photons is too large.

e Only photons with energies
over certain energy threshold
are recorded

This shapes the my,
distribution, making difficult
its description

LPNHE ATLAS

ATLAS Work in progress

— CutatE, >20 GeV
— Extrapolation without cut

40

30
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Experimental limitations: how low can we go in my,?

Three main aspects set a lower bound in the mass that can be reached.

Two close-by
photons may “kill”
each other if they
are within the
Isolation cone of
the other photon.
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Experimental limitations: how low can we go in my,?

Three main aspects set a lower bound in the mass that can be reached.

Ref fig01
* Performance efficiencies Photon ID and A S E
e Trigger Isolation efficiencies oz e

‘@ Z—lly Data, u>40 -
&Z—ly MC, u>40 I

decrease at lower
photon energies

[
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Additional event selection

2 190 ork in progress
Recorded low mass diphoton events g [7/° "or 0w
are collimated in the detector. 12°_3T,Yp >22GeV., Tight 1y pairs
. . . 100 o™ 5 10 GeV
e This topology is denominated P! >20 GeV
—_p." >30GeV
boosted. Epr S 0 Gev
. . . 60 P ::: > 50 GeV ‘_—_ __—___
Instead of performing an inclusive —Pr > o e I
search, only boosted diphoton pairs P -
are selected. B e !
Finally,| Pryy = S0GeV pairsare % a R

selected

e Flattens the background distribution Y Y
(easier to describe analytically!) @

e Keeps sensible signal-to-noise ratio

¢
— 2 2 Non-boosted topol Boosted topol
Pryy = \/ P Ty, T PT,},2 + 2PT,},1PT’},ZCOS (A¢) ONn-poostea topology ooste #080 ogy
Pryy ~ 0 Pryy
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Signal modelling

Narrow-width resonance: shape I T T W
dominated by the detector resolution. 5 O E
. . . . ° 01 ]
e Width increases almost linearly with m,, 2 f :
0.08— ) —
Signal shape: parametric model from osk E
simulation: H—yy standard samples for 0.04F- :
different masses. 0020 '
* Double Sided Crystal Ball function. oot b LA S AL NS A A M
m, [GeV]

2 w0tk ]S TCETATAS Wewmbrogeds T
§ F B O] 1.1 Signal simulation —
% n i o 13_ o Vs=13TeV, Xoeyy _f
5 I ] = =
:E T e E
A 5 07E =
. I | 0.6E- =
10 power law -= = =

= (-m) 3 0.5:— =
N 0.4F =

L) T T K‘l o bttt 03g_l l l l l l l l l I_;

520 540 560 580 600 620 640 660 680 0.2 5555035 40 45 50 55 60

m, [GeV]

m%[GeV]
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Background modelling

Several backgrounds affect this analysis: Each background has a different shape

e Irreducible background from non- §14000C arxiv:1802.04146  avas E
resonant diphoton production (yy §12000?-., fs=13TeV, 361 16 -
component) G10000F- %, v 3

_ N ICNRY -

* Reducible background from QCD S000 b E
photons + jet or dijet events in which 6000 e, oy Shat Une. =
one or both jets are misidentified as e E
photons ( yj, Jy and jj components) 2000 ""----...-.-... T

N .....----—-I----_ .
0 % R 7T R T T
m,, [GeV]
Irreducible yy Reducible y-jet Reducible background contribution
q Y q i increases at lower masses.
> >
Y Y
q ol g q | |
< ) > CAVEAT: analysis ongoing!

Results presented for other m,, range
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https://arxiv.org/abs/1802.04146

Conclusions

e LHC is sensitive to New Physics models
e Axion-like-particles as plausible Dark Matter candidates

 Novel original analysis, to cover unexplored mass regions
e Full Run2 dataset available
e Edge of performances and efficiencies
e Boosted selection

e Analysis ongoing

e Limits will be set on the gjg x Br as a function
of the mass of the resonance.

e Future analysis will benefit from new diphoton
triggers with lower energy thresholds, pushing
forward the lower my, limit.
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Theoretical motivation
Experimental motivation
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Photons in ATLAS
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Photon energy calibration

- 3 5
simulation training of Zee
MC-based > resolution |5
ely calibration smearing
EM MC-based calibrated
cluster ely energy ely
energy calibration energy
4
data longitudinal . . Z-ee
layer inter- —> unlformlty — | —
elinl corrections scale
calibration calibration
6 Jp>ee Z31ly
data-driven scale validation

Figure 6.3: Schematic overview of the procedure used to calibrate the energy response of

electrons and photons in ATLAS (

43).

S Qo T T T T I T T T T T T T
© - ATLAS Simulation S T Initial calibration -
u MPV = 124.48 GeV -

0-051" H>yy Oy= 1.55GeV

- Vs=8TeV — MVA .

0.04 MPV = 124.93 GeV -

- Oy = 1.39GeV

0.03 E
0.02f- =
0.01 E

E L e o T T A
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m,, [GeV]

116 118

(a) H— vy
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Photon production at pp collisions

e Physics motivation: A7)

e Analyses with photons in the
final state suchas H—=»yyand p---
diboson studies (Zy,Wy)

W

h — 5 —

e Diphoton resonances searches

e These analyses are affected by
several backgrounds:

e |rreducible background from
QCD photons: prompt or 1 Prompt qf
bremsstrahlung photons.

v q g
e Reducible: jets faking photons
e All these are background photons g 7 q
for analyses with photons in the | % )
final state. Brem ! ’
q g
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A large background contribution

* Fakes are mainly composed by hadrons inside jets ( mostly n°
decaying into pairs of photons).

* Large jet/dijet/QCD y cross sections: o(jet) = 106pb
» \Very large fakes rejection is required o(dijet) = 10°pb
for analyses with photons in the final o(y) =5 - 10*pb
state. o(pp — H) X Br(H — yy) = 6 - 10~2pb

Parton level

Particle Jet

Energy depositions
In calorimeters
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Photon isolation: calorimetric isolation

e The calorimetric isolation energy, computed as the sum of the transverse
energy in a cone around the photon candidate, is used to discriminate

prompt photons from fakes.

Leakage
f
Photon w._ : / 5 » Clusters are sets of adjacent cells in the
R""*‘\ / calorimeters with energy deposits over a certain
i 5 energy threshold.
Noise aft :
3 4 __—Pileup
E]Z;leup = Pmedian X (ﬂARz - Amask)
Photon cluster
clusters TR —
Z t Pileup
ZSO corr = § correction
i,AR<0.4 i

* Pileup correction is computed event by event using the median energy.
density of all the jets in the acceptance of the detector.

November 23 | 2018
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Isolation energy distribution and current performances

* No energy flow around prompt * |ncreasing pileup degrades
photons — peak around O photon performances

e More energy flow around fake * Pileup increases the width of
photons — higher ETiso,corr the isolation energy

distribution, worsening the

* Fakes: neutral hadrons in jets efficiency and purity of the

decaying into pairs of photons

selection.
ﬂ3000-_lIIIIIIIIIIIIIIIIIIIIIIIIIIII_- 8 ————T '_I_' — — —
§ - ATLAS Internal  Data2017, 8bde trains 1 “ 44 ATLAS Prellmlnary1 & Z—liy Data]
T psoof ¢ (5213 TeV E - Vs=13TeV, 44 fb &Z—ly MC 3
A ml < 0.6 ] I =
. . 150 GeV <p_< 200 GeV- ol .
20001 ¢ 45 < <u> < 50 - 0.9 ;-Q-:&:_@_ =
i Unconverted photons . - o -
: 5 : 0.8F- e E
15001 ~ = %=—0=__ ¢ -
[ e e ] ~ 20 GeV < E; <40 GeV 8=-0- .
- ) 0.7
- - <1.37,1.52< <2.37
1000} . otight -l n -
L, ., oloosed ] 0oeC Unconverted y -
- % ) - Tight ID ]
500F S . . . . e
B ©) 1.1 L L I I I I I
g 095
0 SR R B Tt
topoetcone40 [GeV] ° u
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Pileup

* Pileup: particles from collisions different from the collision under
study. It can come from the same bunch crossing or from the
previous/next bunch crossing.

* Pileup is the price to pay for increasing instantaneous luminosity.
* Photon performances are affected by this increase in pileup.

¢ 1 = number of interactions per bunch crossing

u=4 u=25 Z—uu event

;‘;'.

e,

A EXPERIMENT
Run Num 9, Event Number: 24151616
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Event with 4 Pileup Vertices
in 7 TeV Collisions

4 1/1!!1'@\% A _ 0N
G -

==

10
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And this is the future...

u =200

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <pu>=200




