Introduction 00000000 The winding mode method 000000000

Results

Bibliography and appendices

Winding mode calculation of the effective potential in extra-dimensional theories (New method for gauge-higgs unification models)

COT Corentin

Institut de Physique des 2 Infinis de Lyon Université Claude Bernard de Lyon

Journées de Rencontre des Jeunes Chercheurs, 2019

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Outling			

< □ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q ℃ 2/33

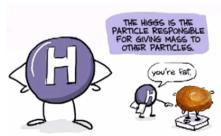
- The Higgs boson
- The Hierarchy problem
- Gauge-Higgs Unification
- Validity of the model
- 2 The winding mode method
 - Propagators modes decomposition
 - The one-loop effective potential
 - Winding modes decomposition
 - Winding mode resummation

3 Results

- SU(2) and SU(3) results
- SU(5) results
- Future work
- 4 Bibliography and appendices

Introduction •••••••	The winding mode method	Results 0000000	Bibliography and appendices
Outline			

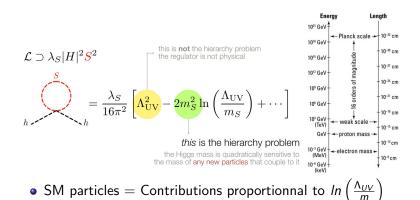
うしん 前 ふかくはや (日本)


- The Higgs boson
- The Hierarchy problem
- Gauge-Higgs Unification
- Validity of the model
- 2 The winding mode method
 - Propagators modes decomposition
 - The one-loop effective potential
 - Winding modes decomposition
 - Winding mode resummation

3 Results

- SU(2) and SU(3) results
- SU(5) results
- Future work
- ④ Bibliography and appendices

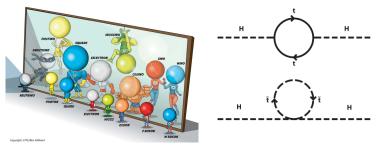
Introduction 0000000	The winding mode method	Results 0000000	Bibliography and appendices
The Higgs boson			
The Higgs	boson		


- Predicted in 1964 independantly by Brout, Englert, Higgs, Hagen, Guralnik and Kibble
- Discovered in 2012 by ATLAS and CMS detector at the LHC.
- Permit to explain particles mass and electroweak symmetry breaking.

 The quantum contributions to its mass (125.18 GeV) are a mystery → Hierarchy problem

Introduction	The winding mode method	Results 0000000	Bibliography and appendices
The Hierarchy problem			

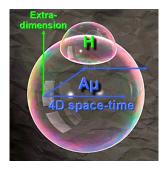
What is the Hierarchy problem ?



- Heavy BSM particles = Big contributions to the Higgs mass
- We don't know where the SM stops $\rightarrow \Lambda_{UV}$ value ?

Introduction	The winding mode method	Results	Bibliography and appendices
0000000			
The Hierarchy problem			

Famous solutions to the Hierarchy problem


- Anthropy principle : Life can only appear in a perfect Universe
 → Every big radiative term cancel with one another
 miraculously (Fine-tunning)
- Supersymmetry : permit to protect the Higgs mass from power-law radiatives corrections → Where are sparticles ?

Introduction	The winding mode method	Results 0000000	Bibliography and appendices
Gauge-Higgs Unification	l de la constante de		

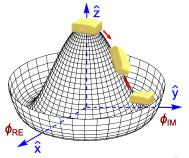
Extra-dimension solution : Gauge-Higgs Unification (GHU)

- What if the Higgs was part of a 5D gauge boson ?
- $\bullet~\mathsf{Higgs} \subset \mathsf{gauge}~\mathsf{boson} \to \mathsf{mass}$ protected by gauge symmetry

Introduction	The winding mode method	Results 0000000	Bibliography and appendices
Gauge-Higgs Unification			
M/horo is th	5 5th dimension 2		

- Fifth dimension is compactified as an S^1/Z_2 orbifold
- Radius of compactification $\frac{1}{R} \approx 5 \text{ TeV} \rightarrow \text{So small we cannot}$ see it yet
- $S^1/Z_2 =$ Circle with fixed points y = 0 and y = πR

Introduction		The wind	ding mode met	thod	Results	Biblio 0000	graphy and appen 0000	lices
Gauge-Higgs U	Inification							
					/	 	13	


Where is the 5th dimension ? (This cake is a lie !)

- $\bullet\,$ Fifth dimension is compactified as an ${\cal S}^1/{\cal Z}_2$ orbifold
- Radius of compactification $\frac{1}{R}\approx 5~{\rm TeV}\rightarrow {\rm So}~{\rm small}$ we cannot see it yet
- S^1/Z_2 = Circle with fixed points y = 0 and y = πR

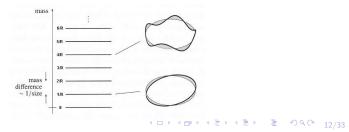
Introduction	The winding mode method	Results 0000000	Bibliography and appendices
Validity of the model			
The effective	ve potential ?		

- V_{eff} permits to show symmetry breaking and calculate the broken generators bosons mass in a theory Higgs mass.
- At low energy, the vacuum will lie at a minimum. If this minimum is not (0,0), there is a symmetry breaking.
- Example : The mexican hat for $\phi \to e^{i\alpha}\phi$ (U(1)) symmetry in the Higgs potential.

Introduction	The winding mode method	Results	Bibliography and appendices
00000000	●○○○○○○○○	0000000	
Outline			

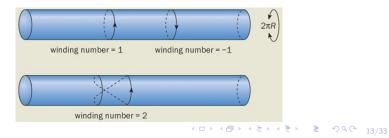
◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ℃ 11/33

1 Introduction

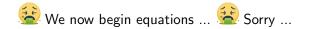

- The Higgs boson
- The Hierarchy problem
- Gauge-Higgs Unification
- Validity of the model
- 2 The winding mode method
 - Propagators modes decomposition
 - The one-loop effective potential
 - Winding modes decomposition
 - Winding mode resummation

3 Results

- SU(2) and SU(3) results
- SU(5) results
- Future work
- ④ Bibliography and appendices


Introduction	The winding mode method	Results	Bibliography and appendices		
0000000	0000000	0000000	0000000		
Propagators modes of	decomposition				
The Kaluza-Klein modes					

- Propagator ≡ "probability amplitude for a particle to travel to travel from one place to another" (Wikipedia)
- A 5th-dimension propagator can be decomposed as Fourier modes called Kaluza-Klein (KK) modes.
- Propagator in momentum-space of the n-th KK mode : $\frac{1}{p^2 - \frac{(n-\delta_0)^2}{R^2}} \text{ with } \frac{(n-\delta_0)^2}{R^2} \text{ its mass.}$
- <u>Problem</u> → All terms have divergencies and the generated Higgs mass at one-loop is too low.



Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Propagators modes d	lecomposition		
The wind	ing modes		

- Another decomposition is with winding arround the compactified dimension.
- Propagator in position-space of the n-th winding mode : $\frac{e^{i\sqrt{p^2 - \left(\frac{n_w - \delta_0}{R}\right)^2}|y - y'|}}{2\sqrt{p^2 - \left(\frac{n_w - \delta_0}{R}\right)^2}}$
- Advantage \rightarrow All the divergences are contained in the winding mode zero.

Introduction 00000000	The winding mode method ○○○●○○○○○	Results 0000000	Bibliography and appendices		
The one-loop effective potential					
Equations					

Introduction	The winding mode method	Results	Bibliography and appendices
	00000000		
The one-loop effective p	otential		

One-loop effective potential in gauge-higgs unification

- <u>STEP 1</u> : Write the V_{eff} expression
- We focus on the gauge boson contribution to the one-loop $V_{\it eff}$ here.
- For SU(2)
 ightarrow U(1) symmetry breaking, we have :

$$V_{eff}^{g} = -\frac{i}{2\pi R} \int \frac{dp^4}{(2\pi R)^4} \frac{3}{2} \sum_{n_{KK}=-\infty}^{+\infty} \left[\ln\left(-p^2 + \frac{n^2}{R^2}\right) + \ln\left(-p^2 + \left(\frac{n-\alpha}{R}\right)^2\right) \right]$$

• Most interesting fact $ightarrow V_{eff}$ only have terms of the form

$$\int \frac{dp^4}{(2\pi)^4} \sum_{n_{KK}=-\infty}^{+\infty} \ln\left(-p^2 + \left(\frac{n-\delta_0}{R}\right)^2\right)$$

Introduction 00000000	The winding mode method ○○○○○●○○○	Results 0000000	Bibliography and appendices
Winding modes deco	mposition		
The KK r	nodes propagator		

• <u>STEP 2</u> : Logarithm term \rightarrow KK modes propagator The previous term can be seen as the KK modes propagator :

$$\sum_{n_{KK}=-\infty}^{+\infty} \ln\left(-p^2 + \left(\frac{n-\delta_0}{R}\right)^2\right) = \sum_{n_{KK}=-\infty}^{+\infty} \int dp^2 \frac{1}{p^2 - \left(\frac{n-\delta_0}{R}\right)^2}$$
$$= \int dp^2 \sum_{n_{KK}=-\infty}^{+\infty} \frac{1}{p^2 - \left(\frac{n-\delta_0}{R}\right)^2} = \int dp^2 \tilde{G}_{KK}(p,\delta_0)$$

Where $\tilde{G}_{KK}(p, \delta_0)$ represent the full KK modes propagator with a mass of $\frac{\delta_0}{R}$ for the zero-mode.

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Winding modes decomposit	ion		

Winding mode transformation

• <u>STEP 3</u> : Full KK modes propagator \rightarrow Full winding modes propagator

 $\tilde{G}_{KK}(p,\delta_0) \rightarrow \int_0^{\pi R} dy \sum_{n_w=0}^{+\infty} [G_w(p,2n_w\pi R,\delta_0) \pm G_w(p,2y+2n_w\pi R,\delta_0)]$

where
$$\mathit{G}_{w}(p,|y-y'|,\delta_{0})=rac{e^{i\chi|y-y'|}}{2\chi}$$
 and $\chi=\sqrt{p^{2}-rac{\delta_{0}^{2}}{R^{2}}}.$

Introduction 00000000	The winding mode method ○○○○○○●○	Results 0000000	Bibliography and appendices
Winding mode resur	nmation		
Regulariz	ation and summation		

- STEP 4 : Regularization procedure
- All divergent terms are contained in $n_w = 0$ so we can cut it \rightarrow Regularization procedure
- <u>STEP 5,6,7..., 99</u>: After integrating on y, on p^2 , Wick rotating $(i\chi \rightarrow -\chi_E)$ and summing on n_w , we finally obtain : $-\frac{i}{2\pi R} \int \frac{dp^4}{(2)^4} \frac{3}{2} \sum_{n_{KK}=-\infty}^{+\infty} \ln\left(-p^2 + \left(\frac{n-\delta_0}{R}\right)^2\right)$ $= \frac{3}{256} \int_0^{+\infty} dp_E \frac{p_E^3}{\pi^3 R} \left[1 - e^{-2\pi R\chi_E} \mp Ei(-2\pi R\chi_E)\right] = f(\delta_0)$ where Ei(x) $= \int_{-x}^{+\infty} \frac{e^{-t}}{t}$ and $\chi_E = \sqrt{p_E^2 + \delta_0^2}$.

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Winding mode resummatio			
Effective pot	ential expressed v	vith f	

• <u>FINAL STEP</u> : We have a simple expression of Veff in terms of the f function.

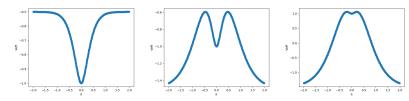
We can finally express V_{eff} in SU(2) as :

$$V_{eff}^{g+gh} = f(0) + f(\alpha)$$

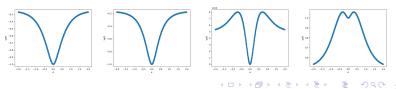
We can also compute the fermion contribution, with N_f the number of fermions

$$V_{eff}^{f} = -\frac{4N_{f}}{3}f\left(\frac{\alpha}{2}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 19/33

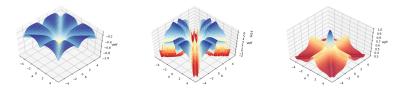

Introduction 00000000	The winding mode method	Results ●○○○○○○	Bibliography and appendices
Outline			
 Th Th Ga Va 2 The Pr Pr Th W 	duction he Higgs boson he Hierarchy problem luge-Higgs Unification lidity of the model winding mode method opagators modes decompo he one-loop effective poten inding modes decomposition	tial	
• SL	lts /(2) and <i>SU</i> (3) results /(5) results		

< □ ▶ < 畳 ▶ < 差 ▶ < 差 ▶ 差 の へ C 20/33


- Future work
- 4 Bibliography and appendices

Introduction 00000000	The winding mode method	Results ○●○○○○○	Bibliography and appendices
SU(2) and $SU(3)$ res	ults		
<i>SU</i> (2) an	d <i>SU</i> (3) results		

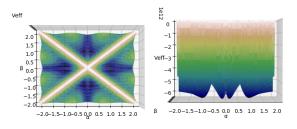
- With all different particles content, no other minimum than α = 0
- $SU(2) \rightarrow U(1)$ (Nf = 0, 1 and 2)



• $SU(3) \rightarrow SU(2) \times U(1)$ (Nf = 0, 1, 2 and 3)

- Possible to play with the number of fermions in the 5-representation (N_f^5) , fermions in the 10-representation (N_f^{10}) and the number of scalars (N_s) in the theory
- For general cases of (N_f^5, N_f^{10}, N_s) , no other minimum than (0,0).

• $(N_f^5, N_f^{10}, N_s) = (1, 0, 0)$, (0, 2, 0), (3, 3, 1)


Introduction 0000000	The winding mode method	Results ○○○●○○○	Bibliography and appendices
SU(5) results			

The most interesting case : the camel case (two humps)

• For a particle content of $(N_f^5, N_f^{10}, N_s) = (N_f^5, 3, 3 + 2 N_f^5)$, V_{eff} has a relative simple form :

$$V_{eff}(\alpha,\beta) = -2\left[f\left(\frac{\alpha+\beta}{2}\right) + f\left(\frac{\alpha-\beta}{2}\right)\right] + f(\alpha) + f(\beta)$$

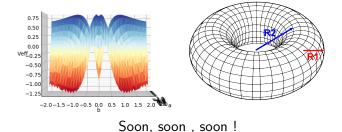
In this case, there are 8 <u>non-trivial minima</u> at (α, β) = (0.95, 0.15)

Introduction 00000000	The winding mode method	Results ○○○○●○○	Bibliography and appendices
SU(5) results			

Possible to compute the broken generators bosons masses (the Higgs) using the two eigenvalues of the Hessian matrix, λ_1 and λ_2 , at the minimum (0.95, 0.15) with :

Higgs mass in the camel case

$$m_{1/2} = (gR)^2 \lambda_{1/2}$$


- For $\frac{1}{R} = 5$ TeV and $g = g_{GHU} \approx 0.1$, we finally find $m_1 = 71.07$ GeV and $m_2 = 87.12$ GeV \rightarrow Same order of the Higgs mass
- R can be slightly different and we are just at one-loop \rightarrow Possible to generate exactly the Higgs boson mass
- First calculation in GHU where the masses generated are of the same order of the Higgs mass !

Introduction 00000000	The winding mode method	Results ○○○○○●○	Bibliography and appendices
Future work			

Work next-to-leading order

This method can be applied to multiple situations :

- All the SU(N) representation groups \checkmark
- \bullet Supersymmetric models with SU(N) representation \checkmark
- Different groups representation than SU(N) \square
- More than one compactified extra-dimension \Box

Introduction 00000000	The winding mode method	Results ○○○○○○●	Bibliography and appendices
Future work			
T 1			

Thanks to you, you and you too !

Thanks to my parents without whom I couldn't be here with you !

Thanks to my roommate Aurélien who handle my bad jokes and my snoring !

And obviously thank you for listening ! Let's start the questions !

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ♀ 26/33

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Outline			
• T • T • G • V 2 The • P • T • W	oduction he Higgs boson he Hierarchy problem auge-Higgs Unification alidity of the model winding mode method ropagators modes decompo he one-loop effective poten /inding modes decompositio /inding mode resummation	tial	
	ults U(2) and <i>SU</i> (3) results U(5) results		

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = ⑦ Q @ 27/33

• Future work

4 Bibliography and appendices

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices ○●○○○○○
Bibliography			

Sidney R. Coleman and Erick J. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking Phys. Rev., D7:1888-1910, 1973.

R. Jackiw.

Functional evaluation of the effective potential. Phys. Rev., D9:1686, 1974.

Martin Puchwein and Zoltan Kunszt.

Radiative corrections with 5-D mixed position / momentum space propagators.

Annals Phys., 311:288-313, 2004.

Leandro Da Rold.

Radiative corrections in 5-D and 6-D expanding in winding modes. Phys. Rev., D69:105015

Yutaka Hosotani.

Dynamical Mass Generation by Compact Extra Dimensions. Phys. Lett., 126B:309-313, 1983.

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices

Bibliography

Yutaka Hosotani.

Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking. Annals Phys., 190:233, 1989.

Naoyuki Haba, Masatomi Harada, Yutaka Hosotani, and Yoshiharu Kawamura.

Dynamical rearrangement of gauge symmetry on the orbifold S1 / Z(2). Nucl. Phys., B657:169-213, 2003.

Naoyuki Haba, Yutaka Hosotani, Yoshiharu Kawamura, and Toshifumi Yamashita.

Dynamical symmetry breaking in gauge Higgs unification on orbifold Phys. Rev., D70:015010, 2004.

Masahiro Kubo, C. S. Lim, and Hiroyuki Yamashita. The Hosotani mechanism in bulk gauge theories with an orbifold extra space $S^{**1} / Z(2)$. Mod. Phys. Lett., A17:2249-2264, 2002.

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices

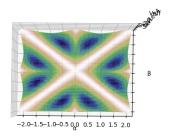
$$V_{eff}^{SU(2)} = f(0) + f(\alpha) - \frac{4N_f}{3}f\left(\frac{\alpha}{2}\right)$$

$$V_{eff}^{SU(3)} = f(0) + f(\alpha) + 2f\left(\frac{\alpha}{2}\right) - \frac{2N_f}{3}\left[f(0) + 2f\left(\frac{\alpha}{2}\right)\right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Appendix 2			

$$\begin{split} V_{eff}^{SU(5)} &= 2f(0) + 2f\left(\frac{\alpha+\beta}{2}\right) + 2f\left(\frac{\alpha-\beta}{2}\right) \\ &+ 2f\left(\frac{\alpha}{2}\right) + 2f\left(\frac{\beta}{2}\right) + f(\alpha) + f(\beta) \\ &- \frac{\left(2N_f^5 - N_s\right)}{3} [2f(0) + 2f\left(\frac{\alpha}{2}\right) + 2f\left(\frac{\beta}{2}\right)] \\ &- \frac{2N_f^{10}}{3} [2f(0) + 2f\left(\frac{\alpha}{2}\right) + 2f\left(\frac{\beta}{2}\right) \\ &+ 2f\left(\frac{\alpha+\beta}{2}\right) + 2f\left(\frac{\alpha-\beta}{2}\right)] \end{split}$$


Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Appendix 3			

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 32/33

Effective potential obtained in the (1,0,0), (0,2,0) and (3,3,1) case

Introduction 00000000	The winding mode method	Results 0000000	Bibliography and appendices
Appendix 4			

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 33/33

Effective potential obtained in the camel case using KK modes