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The ATLAS Detector
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• Will not be discussed in detail here

• Already nicely introduced by Reina

Hopefully you were all paying attention!
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• Will not be discussed in detail here

• Already nicely introduced by Reina

Hopefully you were all paying attention!

What you need to remember for this talk:
• LHC is primarily a pp collider (or qq collider)

•  Jets are produced abundantly 

• a proxy to the initial quark or gluon



Jet Reconstruction
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Jet Reconstruction: EMTopo Jets

• Historically, ATLAS has used calorimeter topoclusters as 
inputs for jet building (EMTopo jets)
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Jet Reconstruction: EMTopo Jets

• Historically, ATLAS has used calorimeter topoclusters as 
inputs for jet building (EMTopo jets)


• Add tracking information to jets 
after jet building


• Add tracking information to jets 
after jet building


• Or do PFlow! 
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Jet Reconstruction: PFlow Jets
    Particle Flow: 
• In PFlow a cell-based energy subtraction algorithm is applied

• Removes overlaps between momentum and energy 

measurements made in tracker and calorimeters

• Match tracks to calorimeter 
clusters


• Remove matched clusters
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matched to any track


• These clusters are neutral 
particles that don’t interact with 
the tracker 
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Jet Reconstruction: PFlow Jets
    Particle Flow: 
• In PFlow a cell-based energy subtraction algorithm is applied

• Removes overlaps between momentum and energy 

measurements made in tracker and calorimeters

• Keep clusters that are not 
matched to any track


• These clusters are neutral 
particles that don’t interact with 
the tracker 

 New inputs to Jet Building:  
• Selected tracks coming from 

the hard-scatter vertex

• Clusters that survived the 

energy subtraction step 
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Jet Reconstruction: PFlow Jets
    Particle Flow: 
• In PFlow a cell-based energy subtraction algorithm is applied

• Removes overlaps between momentum and energy 

measurements made in tracker and calorimeters

Benefit:  
• Benefit from much better low-

energy resolution in tracker

• Direct association to primary 

vertex



Pile-Up
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Pile-up Effects:  
• In-time pile-up occurs when  

multiple collisions per bunch 
crossing happen


• Out-of-time pile-up happens due 
to slow or uncorrected detector 
response with energy leftovers in 
the calorimeters from previous 
bunch crossings 


The price of  Luminosity in LHC

Pile-up effects are background for physics processes   
→ Need to be tagged and removed 

Z→μμ event with 25 reconstructed vertices 
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Origin and Structure of Pile-Up Jets

r
z

Hard-scatter

QCD pile-up

Stochastic  
pile-up

QCD pile-up

• QCD pile-up jets: contain particles from a single QCD 
process in a single pile-up interaction vertex


• Stochastic pile-up jets: combine particles from different 
interactions 




Pile-Up Cleaning
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Pile-Up Jet Tagging

Has majority of its 
tracks coming from 

PU vertex?

Has majority of its 
tracks coming from 

HS vertex?

TRASH

GOOD JETS
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Pile-Up Jet Tagging

• Vertex information suppress pile 
up in |η|<2.5 


• Forward jets outside the tracking 
coverage → No tracking 
information for these jets



Pseudorapidity

forward region
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Forward Pile-Up Jet Tagging

• What do we know? 
✦ QCD pileup jets are mostly produced in pairs 

✦ Due to transverse momentum conservation, the two jets in the 

pair will have opposite directions in the transverse plane

✦ Take advantage of this correlation to tag QCD pileup jets in the 

forward region
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Forward Pile-Up Jet Tagging

• What do we know? 
✦ QCD pileup jets are mostly produced in pairs 

✦ Due to transverse momentum conservation, the two jets in the 

pair will have opposite directions in the transverse plane

✦ Take advantage of this correlation to tag QCD pileup jets in the 

forward region?


Forward Jet back to back  
with a PU jet → tagged as 

PU

Central Jet with majority of 
tracks coming from PU Vertex 

→ Tagged as PU 
PU Vertex 1
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PU Vertex 1

Main Disadvantage

• Based on the assumption that both  jets are reconstructed 
• Not always the case!

PU Vertex 1
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PU Vertex 1

Instead

pmiss
T,i

p fj
T

PU Vertex 1

pmiss
T,i = ∑ tracks | | jets

• Calculate the missing transverse momentum, using tracks or 
jets, for the PU vertex and take projection on forward jet
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PU Vertex 1

pmiss
T,i

p fj
T

PU Vertex 1

Projection 

pmiss
T,i = ∑ tracks | | jets

fJVTi =
Projection

pfj
T

• Calculate the missing transverse momentum, using tracks or 
jets, for the PU vertex and take projection on forward jet 


• Look if projection is proportional to the forward jet momentum


Instead
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• Calculate the missing transverse momentum, using tracks or 
jets, for the PU vertex and take projection on forward jet 


• Look if projection is proportional to the forward jet momentum

• Repeat process for every pile-up vertex of the event


Instead
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• Calculate the missing transverse momentum, using tracks or 
jets, for the PU vertex and take projection on forward jet 


• Look if projection is proportional to the forward jet momentum

• Repeat process for every pile-up vertex of the event

• Choose vertex with largest fJVT value


Instead

fJVT1 =
Projection

p fj
T

fJVT = forward 
jet vertex 
tagging
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fJVT Discriminant 
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|<4.5, 40<pη2.5<| • To evaluate performance:

• Reconstruct truth-particle jets


• Tag forward jets as: 

• hard-scatter if a truth-particle hs  

jet is geometrically matched to 
the forward jet


• as pile-up otherwise


Fill histo with the calculated fjvt 
value for every forward jet 

fJVT = 
forward jet 

vertex 
tagging
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cutfjvt

• Define HS and PU efficiencies :

fJVT Discriminant fJVT = 
forward jet 

vertex 
tagging



Hard-scatter Jet Efficiency
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• PU jet efficiency as a function 
of HS jet efficiency while 
varying the fjvt cut and for 
different pT bins


• Performance is improving with 
pT as expected
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Performance 

Better

fJVT = 
forward jet 

vertex 
tagging



• Define tight and loose working points:

• cutfJVT = 0.53 and 0.72

• Correspond to hs efficiencies of 80% and 90% for pu 

efficiencies of 50% and 68% for jets with 20<pt<60 
GeV
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Efficiency with pT, NPV 
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fJVT = 
forward jet 

vertex 
tagging
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Efficiency with pT, NPV 
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The probability of an upward fluctuation in the fJVT value is more 
likely in low pt bins → lower efficiencies

fJVT = 
forward jet 

vertex 
tagging
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Efficiency with pT, NPV 
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 busier pile-up conditions increase the chance of accidentally 
matching the hard-scatter jet to a pile-up vertex

fJVT = 
forward jet 

vertex 
tagging
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Do we need fJVT?
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Do we need fJVT?

• Many physics processes in LHC involve forward jets 
• As an example here : Vector Boson Scattering  

✦ Basic process: VV→VV

✦ Observe leptonic or hadronic decay of bosons VV

✦ Accompanied by 2 quark forward jets = tagging jets

✦ Tagging jets help us separate this process signature from 

other VV productions in LHC 
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Do we need fJVT?

• Many physics processes in LHC involve forward jets 
• As an example here : Vector Boson Scattering  

✦ Basic process: VV→VV

✦ Observe leptonic or hadronic decay of bosons VV 

✦ Accompanied by 2 quark forward jets = tagging jets

✦ Tagging jets help us separate this process signature from 

other VV productions in LHC 
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http://cds.cern.ch/record/2683100/files/ATL-PHYS-PUB-2019-026.pdf
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If you are interested to learn more about fjvt :
ATL-PHYS-PUB-2019-026

http://cds.cern.ch/record/2683100/files/ATL-PHYS-PUB-2019-026.pdf

