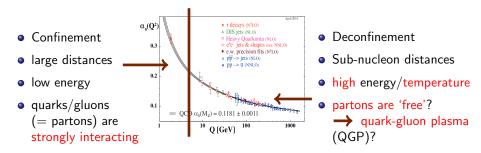
Studying the quark-gluon plasma with CMS detector: The B_c meson production in heavy ion collisions

Guillaume Falmagne

Laboratoire Leprince-Ringuet, Palaiseau (France)


Journées de Rencontre des Jeunes Chercheurs, Moulin-Mer November 26th, 2019

QCD and color confinement (the racist theory)

 Quantum Chromodynamics (QCD) governs the strong interaction, bounding nuclei together

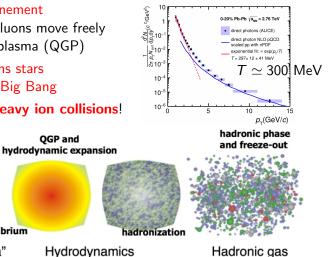
 Stability of nuclei ↔ quarks are bound together ↔ all observed objects carry no colour charge ('white') = confinement

The quark-gluon plasma

- QCD at very high temperature \rightarrow color deconfinement \rightarrow quarks and gluons move freely in a quark-gluon plasma (QGP)
- Present in neutrons stars and first μ s after Big Bang

initial state

CGC


Reproducible in heavy ion collisions!

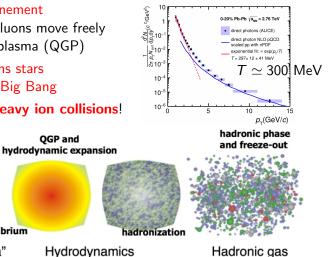
pre-equilibrium

"Glasma"

OGP and

Blackbody photon radiation

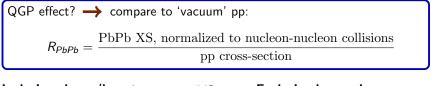
The quark-gluon plasma

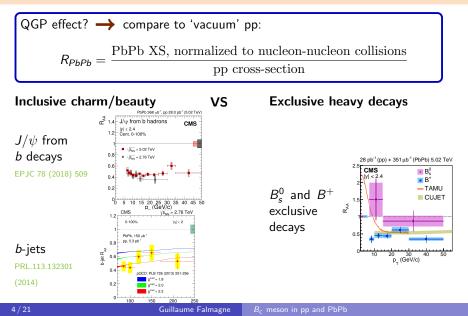

- QCD at very high temperature \rightarrow color deconfinement \rightarrow quarks and gluons move freely in a quark-gluon plasma (QGP)
- Present in neutrons stars and first μ s after Big Bang
- Reproducible in heavy ion collisions!

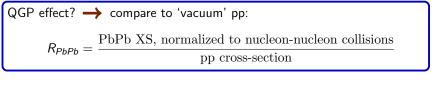
ullibrium

na"

OGP and


Blackbody photon radiation


Heavy quarks to probe the QGP

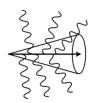

- Standard Model QCD... Not fully understood yet! How to probe this new state of matter?
- Heavy quarks (b and c) are excellent probes:
 - Produced in hard collisions = before QGP expands
 & lifetime before decay ≫ QGP lifetime
 → brings information on the whole QGP history
 - Mass \gg (QGP temperature $\simeq \Lambda_{\text{QCD}}$)
 - \rightarrow Separation of scales
 - → easier (perturbative) calculations/observables
- Quantify/discriminate effects of the medium on these probes
 fundamental properties of the medium :

thermodynamics/transport/bound states...

Inclusive charm/beauty VS Exclusive heavy decays

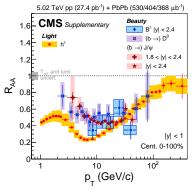
Inclusive charm/beauty

VS


Exclusive heavy decays

- 🗸 High stats
- Total quark cross-sections
- X No meson flavour discrimination
- X Smeared kinematics
- → Global medium properties

QGP effect? -> compare to 'vacuum' pp:	
$R_{PbPb} = \frac{\text{PbPb XS, normalized to nucleon-nucleon collisions}}{\text{pp cross-section}}$	
Inclusive charm/beauty V	S Exclusive heavy decays
✓ High stats	× Low stats
✓ Total quark cross-sections	✓ Precise flavour content
✗ No meson flavour discrimination	Clear decay kinematics
X Smeared kinematics	✓ Clean samples (resonances + PID)
→ Global medium properties	→ Detailed insight into medium dynamic


An effect of QGP: parton energy loss

- Heavy quarks lose energy in the QGP (gluon radiation, elastic collisions).
 However:
 - Smaller energy loss than gluons, due to smaller color charge
 - Smaller energy loss than light quarks, due to possible dead-cone effect (relevant at low p_T)

 \rightarrow 1 > $R_{AA}(B)$ > $R_{AA}(D)$ > $R_{AA}(h^{\pm})$...

Where does the B_c fit in this picture?

Dissociation

 \overline{c}

Hard processes

С

ecombination

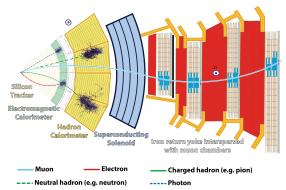
G. Falmagne

Recombination with charm?

 In LHC PbPb central collisions: up to 100-1000 charm quarks produced ! (from uncorrelated nucleon-nucleon collisions)

• How to discriminate among many recombination models for J/ψ ?

- Statistical hadronization (binding of uncorrelated deconfined c and \bar{c})
- Transport model (continuous dissocation/recombination of bound state)

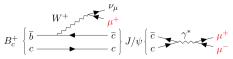

• ...

 B_c difficult to produce in 1 hard collision: need a b̄b and a c̄c pair.
 → If a b quark can recombine with charm in the medium ... dramatic augmentation!

 \rightarrow Could bring new insights/discriminate on recombination mechanisms!

Compact Muon Solenoid

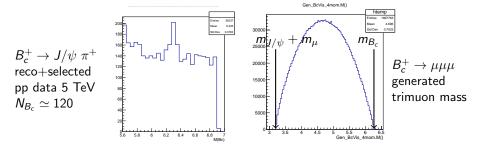
- Excellent muon detection
- Excellent secondary vertex reconstruction
- X Strong longitudinal magnetic field → Limited low p_{\perp} muon acceptance


- data: RunII at $\sqrt{s_{NN}} = 5.02$ TeV, pp 2017 (300 pb⁻¹) and PbPb 2018 (1.5 nb⁻¹)
- MC: PYTHIA8 + GEANT4 + EVTGEN
- B_c signal MC: use specific generator BCVEGPY before PYTHIA

B_c^+ : a new and challenging QGP probe

- Possible large recombination of B_c! Caveats:
 - Mostly for $p_T \lesssim m_{B_c}$ (hard with CMS)
 - Added to suppression mechanisms

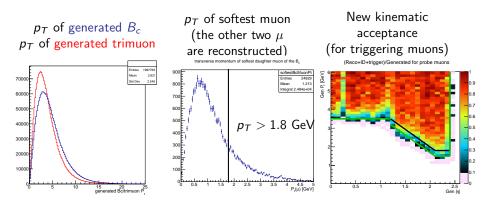
- Two different heavy quarks bound
 → original view of energy loss VS flavour
- Challenge of B_c exclusive decay measurement: low yields!
 - $p_T(B_c)$ peaks at 3 GeV \rightarrow try to lower p_T thresholds
 - Use partially reconstructed tri-muon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$)



Small B_c displacement from primary vertex
 → Optimize signal selection with BDT (Boosted Decision Tree)

B_c^+ : Hadronic or semi-leptonic channel?

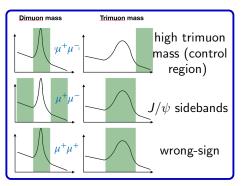
Low cross section:


- Use (partially reconstructed) trimuon channel ($\mathcal{B}_{muonic} = 20 \times \mathcal{B}_{hadronic}$):
 - Hadronic channel observed in pp 2017 data, but 4× less equivalent lumi in PbPb + higher background + potential suppression...
 → hopeless in PbPb
 - Non-peaking signal \rightarrow have to master the backgrounds!

Preliminary: lowering p_T thresholds

Low cross section:

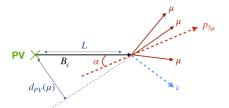
B_c production peaks at p_T = 3 GeV → aim at lower p_T muons
 → Push down muon kinematic acceptance cuts + allow a 3rd muon (not firing the *dimuon trigger*) in a looser acceptance


Preliminaries

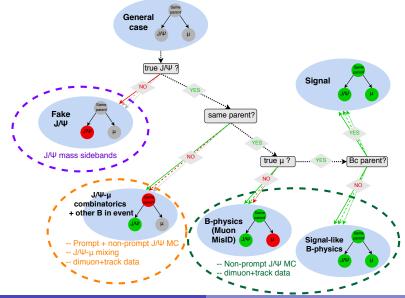
Used samples

- pp and PbPb at 5.02 TeV, with dimuon (J/ψ) trigger
- B_c signal MC: from BCVEGPY2.2 specific generator

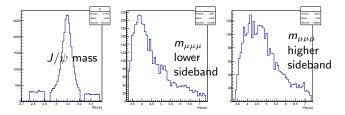
For background studies:


- Define samples w.r.t. trimuon sign (± 1 or ± 3) and J/ψ or trimuon mass sidebands
- For track $\rightarrow \mu$ mis-identification:
 - MC for prompt J/ψ and non-prompt J/ψ (daughter of B⁰, B⁺, B_s) for correlated background

- dimuon+track data (with \simeq muon selection for the track)
- flipped- J/ψ data (where J/ψ is rotated in same event) for uncorrelated background


Analysis strategy

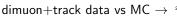
- Preselection: standard (loose) for muons and dimuons
 → B_c candidate = dimuon at J/ψ mass + μ pointing to same displaced vertex, total charge ±1
- Use discriminant variables to improve signal significance, via BDT:
 - Lifetime significance
 - μ displacement from PV
 - angle $\overrightarrow{p_{3\mu}} [\overrightarrow{PV,SV}]$
 - Vertex probability
 - $\sum_{i,j=1,2,3} |\Delta R(\mu_i, \mu_j)|$
 - $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(
 u)$
 - ..

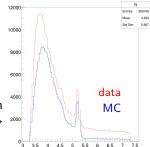

- Background studies: data-driven (sidebands, dimuon+track) + MC J/ ψ
- Signal extraction: determine shapes for the different backgrounds
 template fit of trimuon mass (where only normalizations are free)
 (but presented today: only pre-fit!)
- From signal yields + acceptance&efficiency corrections $\rightarrow R_{PbPb}(B_c)$

Mastering the backgrounds

Fake J/ψ

- charge ± 1 trimuon \rightarrow 2 opposite-sign dimuons = 2 possible J/ψ
- Cannot choose 'the closest to the J/ψ mass', or biases $M(\mu\mu)$ shape (possible undersubstraction of fake J/ψ from under the J/ψ mass peak)
- Events with one dimuon in sidebands, and one in peak region: split between signal and background samples (with appropriate weights)
- Correct some variables for biased kinematics (from incorrect dimuon mass)


• Will fit both sidebands (with error function + decreasing exponential), and take the average shape as extrapolation under the peak


$B ightarrow J/\psi X$ with muon misidentification

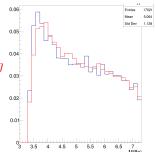
- track $\rightarrow \mu$ misID is of order = 0.1 0.5% $\implies B \rightarrow J/\psi X$ decays give high background (e.g. $B^+ \rightarrow J/\psi K^+$)
- Obtained with non-prompt J/ψ MC
- This MC *should* also describe:
 - J/ψ + track from other displaced vertex ($ar{b}$ from the $bar{b}$ pair)
 - Combinatorial: J/ψ + random track
- BUT control region (high trimuon mass) shows underprediction of MC!

 \rightarrow Need data-driven methods for J/ψ +track 'uncorrelated' background

Problem shows as well in

'Uncorrelated' J/ψ +track

Goal: find a shape for this background


(then, normalize with high trimuon mass control region)

- From (non)prompt J/ψ MC: shape too wrong
- Dimuon+track data: still imperfect shape (and includes correlated B → J/ψX)
 → would need to extract misID probabilities from data
 + probability to be K or π (impossible at CMS)
- Current method: consider all displaced J/ψ , flip the direction of their momentum and vertex displacement, and run trimuon analyzer

J/ψ direction flipping

- To describe combinatorial J/ψ +track background, can rotate by some angle:
 - The dimuon momentum direction
 - The dimuon flight distance (PV-secondary vertex segment)
- Then: look for a displaced trimuon (usual business)
- Does the rotation angle change the resulting shape? Or describe different (correlated) backgrounds?

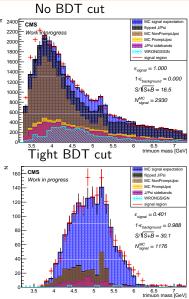
 Example: compare the shapes from same side η and opposite side η flipping
 Get different normalizations, but similar trimuon mass shapes

BDT

BDT & strategy for normalization

- Apply BDT after loose pre-selection
- BDT needs normalizations of signal & background samples \rightarrow use a priori normalizations

- Signal MC: scale to cross section from pp 7 TeV measurements (average from LHCb) and CMS) extrapolated to 5 TeV
- (Non-)prompt J/ψ MC: use pp and PbPb cross sections from CMS measurement (extrapolated to low p_T)



Results

pp preliminary result

- Same sign + + + / - sample only shown for illustration
- More work needed on J/ψ-muon combinatorics: here, J/ψ flipping
- J/ψ sidebands
- non-prompt J/ψ MC (×2 for wrong misID in MC)
- Signal MC B_c

PbPb

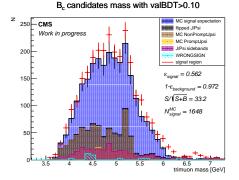
- 4 times less nucleon-nucleon equivalent luminosity in PbPb than pp
- Possible suppression
- More track background than in pp
 - \rightarrow Challenging to observe B_c signal!

... but promising first results (too preliminary to be shown), that could lead to the first observation of B_c in PbPb

Results

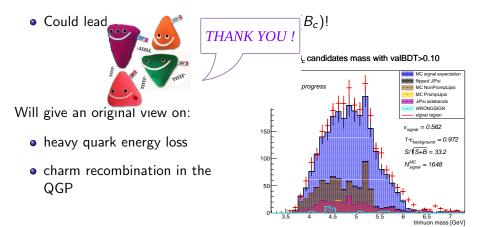
PbPb

- 4 times less nucleon-nucleon equivalent luminosity in PbPb than pp
- Possible suppression
- More track background than in pp
 - \rightarrow Challenging to observe B_c signal!
- ... but promising first results (too preliminary to be shown), that could lead to the first observation of B_c in PbPb



Conclusion

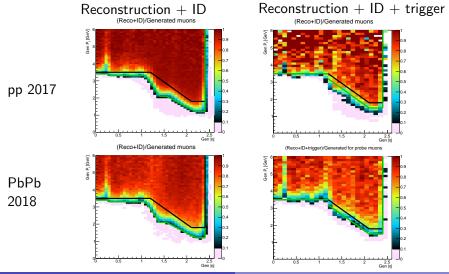
- pp analysis well advanced
- PbPb analysis first results seem promising
- Could lead to first measurement of $R_{PbPb}(B_c)$!


Will give an original view on:

- heavy quark energy loss
- charm recombination in the QGP

Conclusion

- pp analysis well advanced
- PbPb analysis first results seem promising

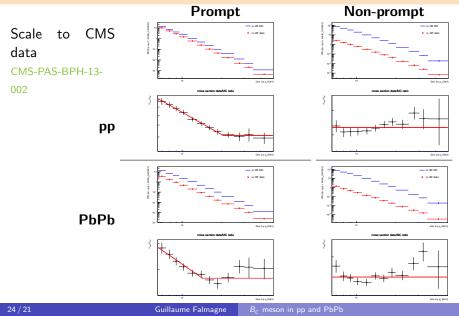


BACKUP

Backup

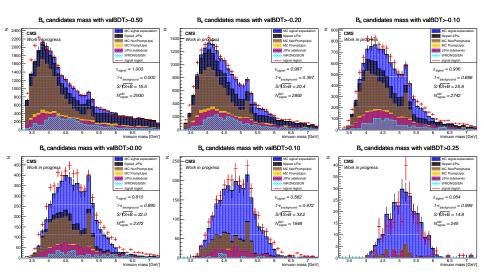
2017-2018 data: new single muon acceptance cuts

From single muon efficiency maps:


Guillaume Falmagne

 B_c meson in pp and PbPl

23 / 21


Backup

MC normalization for (non-)prompt J/ψ

Backup

pp: trimuon mass for increasing BDT cuts

25 / 21