Development and characterization of novel electronics for the search of dark matter for DAMIC-M

Giorgos PAPADOPOULOS DAMIC-M LPNHE, Sorbonne University, Paris

JRJC 2019

26 November 2019

LPNHE

PARIS

Dark Matter (DM) motivation

Evidence:

- Galaxy rotation curve
- Weak field lensing of colliding galaxy clusters
- CMB power spectrum
- Mass to luminosity ratio

Up to date "beliefs":

DM detection method motivation

Indirect methods only enhance the DM existence (AMS-02)

Production has been unsuccessful to reveal the nature of DM in the GeV-TeV mass range (LHC, CERN)

Multiple experiments give an effort in the detections of DM. Current results can only exclude regions for the mass or crosssection of possible DM particles.

 \rightarrow Light wimps

DAMIC-M Overview

DArk Matter In CCD at Modane (DAMIC-M):

- 50 scientific Charge Coupled Devices (CCDs) made of ultra-pure Si with Skipper readout
- 36Mpix large and ~20g each, a total kg-size target mass
- Sub-electron resolution
- 0.1 dru background
- > R&D of the electronics to control the CCD
- Simulations of the detector design and shielding
- Underground Laboratory in Modane (LSM). ~2km of rock to stop cosmic background.
- Low Background Chamber (2020) test detector to evaluate new CCDs and measure background
- > Final experiment data taking will start in 2022.
- DAMIC-M will pioneer in the low mass WIMPs and hidden-sector DM research.
- > ERC grant

Giorgos PAPADOPOULOS

CCD Operation

Readout

charge transfer and recording

Charge Coupled Device (CCD)

1. Charge generation - Exposure

- CCD made of silicon and separated in pixels.
- Incident particles deposit energy in the bulk

2. Charge collection - Exposure

3. Charge transfer - Readout Integration of Photon-Induced Charge Raindrops Vertical register Horizontal register Paralle Bucket Parararararararararar Parallel Registe Shift (1 Row) Serial Registe Conveyer Belt Readout circuit Figure 5 Calibrated Measuring Bucket Brigade CCD Analogy Containe Η Η L Η Η L L L L

- Move the charge by alternating the voltage of the electrodes
- An analogy of this operation is the bucket brigade

CCD Readout (Skipper)

Skipper technique allows for a Non-Destructive Multiple pixel charge measurement (NDCM) which results the electronic noise to follow the $1/\sqrt{NDCM}$ (\rightarrow A. Matalon talk)

- Before moving the charge under the sense node (SN), the Reset Gate puts the sense node to a Reference voltage.
- A bump will occur in the output signal of the CCD
- Then, the charge is moved to the SN.
- ΔV is the voltage change due to the charge following

$$\Delta V = \frac{Q}{C_{SN}}$$

where C_{SN} is the capacity of the sense node

Giorgos PAPADOPOULOS

Noise sources

Reset noise (or "kTC" or "kT/C" noise)

- The reference level is not always the same after every reset due to thermal noise generated by the resistance of the reset FET
- Correlated Double Sampling (CDS): measure both the reference and signal levels and subtract them
- > The longer time we measure each, the better the resolution
- Low frequency noise (or "1/f" noise) dominates, changes the reference level
- Total readout time increases linearly with pixel readout time

Giorgos PAPADOPOULOS

Noise sources

Reset noise (or "kTC" or "kT/C" noise)

- The reference level is not always the same after every reset due to thermal noise generated by the resistance of the reset FET
- *Correlated Double Sampling* (CDS): measure both ۶ the reference and signal levels and subtract them
- The longer time we measure each, the better the ۶ resolution
- Low frequency noise (or "1/f" noise) dominates, changes the reference level
- Total readout time increases linearly with pixel readout time

Dark current

- Thermally generated electrons in the bulk of the CCD
- Depends linearly on the time
- Limits the exposure time
- The longer the exposure time, the worse the Signal to Noise Ratio
- Lower the temperature (~100K) to decrease the dark current

Real CCD image on surface level

Full Setup & Electronics

- All voltages and clocks during the expose and readout phases will be provided by the **CABAC** board.
- The **CCD ReadOut Chip** (**CROC**) will preprocess the signal to improve the Signal-to-Noise Ratio.
- An **Analog to Digital Converter** (**ADC**) will preform the transition from the voltage domain to the digital. The ADC can only apply the conversion in certain specified moments.
- Everything is going to be controlled by the FPGA, the brain of the, so called, *Odile* motherboard

CROC: Introduction

CCD ReadOut Chip

- CROC processes the CCD output signal and the ADC will perform conversion from analog to digital
- Placed as close as possible to the CCD output to improve the SNR. Amplifying the signal soon, minimizes the effect of any introduced noise until the ADC.
- Single ended input to differential output (CCD output is single ended)
- Dual Slope Integrator (DSI) & Transparent (Digital Correlated Double Sampling DCDS) modes
- First version under evaluation at room temperature

Giorgos PAPADOPOULOS

CROC: DSI mode

The DSI is the dominating mode to be used for the pixel charge measurement. The DSI method combines a *Correlated Double Sampling* and a CCD signal integration.

- 1) A **reset pulse** sets the CROC input to a voltage reference. Same principle as for the CCD conversion of charge.
- 2) As the reference level stabilises, the CROC amplifies and **integrates** this level for an integration time t_{int}
- 3) The CROC input is isolated while the pixel charge is injected to the Sense Node of the readout circuit.
- 4) When is stable, the signal level is **integrated** for the same integration time with **reversed polarity** *with respect to the reference level (achieving the CDS)*
- 5) The **ADC measures** the output of CROC.
- > New measurement with a new reset pulse...

Set reference \rightarrow measure reference \rightarrow measure signal \rightarrow Sample with ADC

CROC: DSI mode

- Regular CCD: integration time $O(10\mu s) \rightarrow$ high frequency noise is eliminated \rightarrow low frequency noise dominates
- Skipper CCD integration time $O(1\mu s) \rightarrow low$ frequency noise eliminated \rightarrow Small integration time increases the output noise.
- > Multiple measurements of the pixel charge decreases the noise as $1/\sqrt{NDCM}$
- Optimization parameters \rightarrow integration time
- ADC requirements \rightarrow sampling frequency ~0.5-1 MHz for integration time ~1µs

Giorgos PAPADOPOULOS

CROC: Transparent mode

Alternative method to measure the CCD signal: *Digital Correlated Double Sampling* (DCDS).

- Simpler method, yet more demanding
- CROC operates as a simple single-to-differential gain amplifier, so the CROC output signal will be similar to the CCD's.
- 1) Set a reference level to CROC input
- 2) The ADC oversamples the signal

Advantages

- Digitally determination of the reference and signal level by averaging a sufficient number of samples.
- > Further digital analysis is possible.
- \succ High sampling frequency \rightarrow low frequency noise is eliminated

Disadvantages

- Low frequency noise could affect the measurement.
- > Fast ADC is necessary \rightarrow >10MHz.
- The higher the speed of an ADC the lower resolution (N-bits).

CROC: Preliminary results

- Input noise of CROC in Transparent mode at room temperature.
- Input noise = $3.5 \,\mu V = \sim 1-2 \, e^{-1}$

Analog to Digital Converter (ADC)

Transfer from the analog domain (volts) to the digital (ADUs: Analog to Digital Units)

- > 3 ADC candidates for the DAMIC-M:
 - AD4020, 20-bit 1.8 MSps 10Vpp
 - MAX11905, 20-bit 1.6 MSps 6Vpp
 - LTC2387-18, 18-bit 15 MSps 8.192 Vpp
- Rapide 4-ADC differential input board

Four aspects are evaluated:

- 1. Intrinsic noise
- 2. Linearity DC input
- 3. AC input
- 4. Cross-talk

Analog to Digital Converter (ADC)

ADC evaluation setup

Transfer from the analog domain (volts) to the digital (ADUs: Analog to Digital Units)

- > 3 ADC candidates for the DAMIC-M:
 - AD4020, 20-bit 1.8 MSps 10Vpp
 - MAX11905, 20-bit 1.6 MSps 6Vpp
 - LTC2387-18, 18-bit 15 MSps 8.192 Vpp
- Rapide 4-ADC differential input board

Four aspects are evaluated:

- 1. Intrinsic noise
- 2. Linearity DC input
- 3. AC input
- 4. Cross-talk

Setup:

- An FPGA to control the ADC
- A low noise *Digital-to-Analog Converter (DAC)*
- A high resolution multimeter
- A waveform generator
- A Single to Differential Converter (StD)

1. Intrinsic noise (or transition noise)

Sort the (+) and (-) of the differential inputs and connect them to a very low noise reference voltage.

For 10 000 samples at a sampling frequency $f_s = 9.091 \text{ MHz}$:

Channel	Noise (ADU)
Ch0	1.598 ± 0.012
Ch1	1.591 ± 0.011
Ch3	1.483 ± 0.011

- > Expected noise = 1.4 ADU.
- $\,\,{}^{\scriptscriptstyle >}\,\,$ The 1.6 ADU maximum value corresponds to 50 μV input noise.

* From the 4 ADCs or channels (0, 1, 2, 3) on the board, channel 2 is not working, so the results will include *Ch0*,1,3

2. Linearity – DC input

Use a DAC to cover the ADC input range. The linearity of the ADC can be presented as the ADC output vs the DAC input. One can calculate the 1 ADU of the ADC in volts from the slope of the linear fit:

 $1 \text{ ADU}^{\text{ADC}} = 31.24 \ \mu \text{V}$

Theoretical resolution of this ADC: 1 ADU = (input range)/ 2^n 1 ADU = 31.25 μ V

The deviation from the expected value is measured \pm 4-5 ADU, while a typical Integral Non-Linearity is expected 0.3 ADU with maximum \pm 3 ADU.

3. AC input – sinusoidal signal

Sinusoidal signals are inserted to the ADC

Sampling frequency = 9.091MHz

- Good general response for AC signals
- Some unexplained phenomenons in noise
- High effect of the harmonics in Fourier Transformation plots (peaks at multiples of the input signal frequency)

Giorgos PAPADOPOULOS

3. AC input – sinusoidal signal

Sinusoidal signals are inserted to the ADC

Sampling frequency = 9.091MHz

- Good general response for AC signals
- Some unexplained phenomenons in noise
- High effect of the harmonics in Fourier Transformation plots (peaks at multiples of the input signal frequency)

Giorgos PAPADOPOULOS

4. Cross-talk

Send signal to a channel and check the rest of the channels for noise increasing or signal pattern output.

> No cross-talk effect is observed.

		Signal to:			
		Ch0	Ch1	Ch3	
	Ch0	inp signal	1.527 +/- 0.017	1.521 +/- 0.016	
Read					
signal	Ch1	1.605 +/- 0.018	inp signal	1.622 +/- 0.019	
from:					
	Ch3	1.469 +/- 0.016	1.509 +/- 0.018	inp signal	

Conclusion

- > The CROC chip is operational with very low noise introduction
- Tests in low temperature
- Tests with CROC integrated in a CCD setup for real CCD signal as input
- New upgraded design CROC is under work
- > A fast ADC board was evaluated and could support the final experiment
- New design is under work compatible with CROC
- Tests in a CCD setup

CCD Tower

Backup

For "CROC: Transparent mode" slide

Optimal digital correlated double sampling for CCD signals, Stefanov and Murray, 2014

Fig. 1 Timing diagram of CCD output signal

Output noise vs integration time

Noise vs. Integration