Journées de Rencontre des Jeunes Chercheurs 2019

ID de Contribution: 111

Type: Non spécifié

UNDERSTANDING COSMIC ABUNDANCE OF 22Na

jeudi 28 novembre 2019 11:30 (30 minutes)

Simulation of nova explosive nucleosynthesis at the white-dwarf surface predicts the production of the radionuclide ²²Na. It has an interesting half life of 2.6 yr, making it a potential astronomical observable by allowing space time correlation with the astrophysical object. ²²Na should provide constraints on nova models, but its gamma-ray line 1.275 MeV has not been observed yet. Within nova temperature range, the main destruction reaction ²²Na(p, γ)²³Mg is dominated by a resonance at 0.213 MeV corresponding to ²³Mg excited level 7.786 MeV, as it will be shown here. There is however a disagreement among the measured strengths of this resonance. An experiment was performed at GANIL facility to measure the lifetime of 7.786 MeV level with a resolution expected at 1 fs (known upper limit 12 fs). The experiment will be presented. With a beam energy of 4.6MeV/u, the neutron transfer reaction ³He(²⁴Mg, α)²³Mg* at state of interest was tagged with particle detectors (VAMOS++ spectrometer, SPIDER silicon dE-E)and gamma tracking spectrometer AGATA. The resolution of order 1 fs is possible with Doppler Shift Attenuation Method DSAM, meaning an analysis of Doppler shifted attenuated lineshapes of measured gamma peaks. The experiment will also allow an evaluation of the branching ratio for proton decay of ²³Mg interesting state. In fine, ²²Na(p, γ)²³Mg resonance strength $\omega\gamma$ will be obtained with higher precision. Predictions of the impact of this resonance on ²²Na abundance in nova ejecta will be presented.

Preliminary results of the experiment analysis will be presented. Produced light particles have been identified within SPIDER data as well as gamma Doppler shifted rays from ²³Mg excited states. Preliminary constrains thanks to α coincidence seen by VAMOS have allowed to improve gamma spectra. Velocity of ²³Mg ions has been estimated with a Doppler correction method presented here. A first estimation of the known lifetime of ²³Mg at 2.052 MeV has been derived through DSAM with a preliminary Monte Carlo simulation of the experiment.

Auteur principal: Mlle FOUGÈRES, Chloé (GANIL CEA/DRF - CNRS/IN2P3)

Orateur: Mlle FOUGÈRES, Chloé (GANIL CEA/DRF - CNRS/IN2P3)

Classification de Session: Nuclear physics