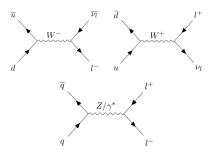
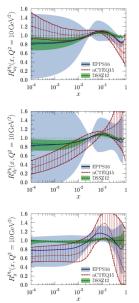


Weak-boson production in p–Pb collisions at 8.16 TeV with ALICE

GUILLAUME TAILLEPIED PhD supervisor: Xavier Lopez Laboratoire de Physique de Clermont

JRJC 2019 November 24 - 29, 2019 Logonna-Daoulas, France


Physics motivation



Z and W are sensitive probes of the nuclear Parton Distribution Function (PDF):

- produced in the hard processes at initial stages of the collisions,
- sensitive to the nuclear modification of the PDF,
- in their leptonic decay: insensitive to the strongly interacting medium.

Z and W production at leading order:

Physics motivation

Production cross-section: to be compared to the expression obtained using QCD factorization theorem:

$$\sigma_{AB}\propto \sum_q rac{4\pi e_q^2 lpha^2}{9\hat{s}}f_q(x_1,Q^2)f_{ar{q}}(x_2,Q^2).$$

W charge asymmetry: sensitive to the d/u ratio, partial cancellation of theoretical and experimental uncertainties:

$$A \equiv \frac{N_{\mu^+ \leftarrow W^+} - N_{\mu^- \leftarrow W^-}}{N_{\mu^+ \leftarrow W^+} + N_{\mu^- \leftarrow W^-}}$$

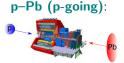
Nuclear modification factor: evaluates the supression or enhancement of the production due to nuclear effects:

$$R_{AA(pA)} \equiv rac{1}{\left\langle \, \mathcal{T}_{AA(pA)}
ight
angle} rac{\mathrm{d}N_{AA(pA)}/\mathrm{d}y}{\mathrm{d}\sigma_{pp}/\mathrm{d}y},$$

with T_{AA} : nuclear overlap function from Glauber model.

G.Taillepied

nPDF set	EPS09	nCTEQ15	EPPS16	
Order	NLO	NLO	NLO	
Flavour separation		valence quarks	valence $+$ sea quarks	
Proton baseline	CTEQ6.1	CTEQ6M-like	CT14NLO	
Free parameters	15	35	52	
Data points	929	708	1811	
Included experimental data				
DIS in I ⁻ +A	\checkmark \checkmark \checkmark		\checkmark	
Drell-Yan in p+A	\checkmark	\checkmark	\checkmark	
RHIC pions d+Au	\checkmark	\checkmark	\checkmark	
ν -nucleus DIS			\checkmark	
Drell-Yan in π +A	fan in π +A \checkmark			
LHC p–Pb dijets			\checkmark	
LHC p–Pb W and Z			\checkmark	


PoS (HardProbes2018) 014

Z and W in p–Pb with ALICE

Coverage of the muon spectrometer: $2.5 < y_{lab} < 4$.

Asymmetrical collisions \rightarrow rapidity shifted between CMS and lab frames: $\Delta y = \pm 0.4654.$

 $2.03 < y_{\rm cms} < 3.53$

 $-4.46 < y_{
m cms} < -2.96$

Bjorken-x coverages (in the 2 \rightarrow 1 approximation: $x = \frac{M}{\sqrt{s_{NN}}} e^{\pm y}$):

Collision	Rapidity	Boson	Bjorken-x
n Dh	p–Pb 2.03 < y _{cms} < 3.53	Z	$3.27 \times 10^{-4} < x < 1.47 \times 10^{-3}$
р-Ро		W	$2.89 imes 10^{-4} < x < 1.29 imes 10^{-3}$
Pb–p –	$-4.46 < y_{\rm cms} < -2.96$	Z	$2.16 imes 10^{-1} < x < 9.66 imes 10^{-1}$
		W	$1.90 imes 10^{-1} < x < 8.52 imes 10^{-1}$

Data sample: from proton–lead collisions at $\sqrt{s_{_{\rm NN}}} = 8.16$ TeV in November and December 2016.

Trigger classes:

- CINT7: Minimum Bias, logical AND between VOA and VOC,
- CMSH7: single muon with $p_{\rm T} > 4.2 \text{ GeV}/c$, and MB,
- CMUL7: unlike-sign muon pair, each with $p_{\rm T} > 0.5$ GeV/c, and MB.

Collision	LHC period	N _{runs}	NCMSH	NCMUL
p–Pb	LHC16r	57	XXX	XXX
Pb–p	LHC16s	80	XXX	XXX

Luminosity of the periods:

$$\mathscr{L} = \frac{N_{MB}}{\sigma_{MB}} = \frac{F_{norm} \times N_{CMUL}}{\sigma_{MB}}$$

From: normalization factor to obtain N_{MB} from N_{CMUL} ,

• σ_{MB} : MB cross section estimated with Van-der-Meer scans.

LHC16r:

 $\mathscr{L} = 8.47 \pm 0.01 \pm 0.17 \text{ nb}^{-1}.$

Plot removed

LHC16s:

$$\mathscr{L} = 12.75 \pm 0.01 \pm 0.25 \text{ nb}^{-1}.$$

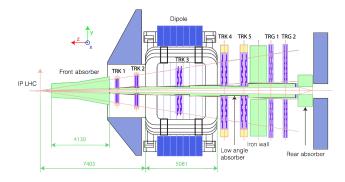
Z cross section:

$$\sigma_{Z\to\mu\mu}=\frac{N_Z}{\mathscr{L}\times\epsilon}.$$

Z candidates: opposite-sign muon pairs in the fiducial region:

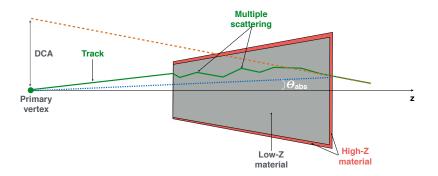
$$-4 < \eta_{\mu} < -2.5, \ p_{
m T}(\mu) > 20 \ {
m GeV}/c, \ 60 < m_{\mu^+\mu^-} < 120 \ {
m GeV}/c^2.$$

Three steps:


- measure N_Z the number of dimuons from Z decay in the data,
- estimate the efficiency ϵ of the detector over the period,
- evaluate the cross section from N_Z , accounting for the luminosity and efficiency.

Z: selection of the Z candidates

Selection: unlike-sign muon pairs reconstructed within the geometrical acceptance of the muon spectrometer ($-4 < \eta < -2.5$). Offline cuts applied to remove some background:


- transverse momentum: p_T > 20 Gev/c to reject muons from the decays of low mass quarkonia, and reduce combinatorial background,
- trigger-tracker matching: to ensure that each track reconstructed by the muon tracking system matches a track segment in the trigger chamber,

Z: selection of the Z candidates

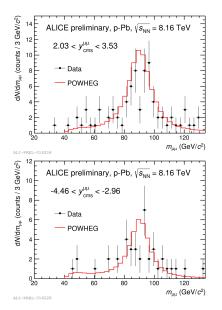
- radial transverse position: 17.6 < R_{abs} < 89.5 cm to remove tracks going through multiple scattering,</p>
- **product of the track momentum to its distance of closest approach**: $p \times DCA < 6\sigma$ as to reject tracks that are not coming from the interaction vertex.

Z: selection of the **Z** candidates

Z candidates: counting the opposite-sign muon pairs that pass the selection, in the fiducial region:

$$-4 < \eta_{\mu} < -2.5, \ p_{
m T}(\mu) > 20 ~{
m GeV}/c, \ 60 < m_{\mu^+\mu^-} < 120 ~{
m GeV}/c^2.$$

Proton–lead:


$$N_Z^{pPb}=64\pm8\,({\rm stat}),$$

3 times higher than at 5.02 TeV.

Lead-proton:

$$N_Z^{Pbp} = 34 \pm 6 \text{ (stat)},$$

15 times higher than at 5.02 TeV.

Sources of background:

- $Z \rightarrow \tau \tau \rightarrow \mu \mu$, pairs from charm, bottom and top (FONLL, POWHEG), $\sim 1\%$ of the yield,
- combinatorial background (same-sign dimuon invariant mass distribution), negligible or substracted from Z candidates.

Plot removed Plot removed

Overall, background small if not negligible, taken as systematic uncertainty on the signal extraction.

G. Taillepied

JRJC - November 24-29, 2019 - Logonna-Daoulas, France

Z: efficiency

Goal: account for the loss of signal because of the detector.

Method:

- simulate $Z \rightarrow \mu\mu$ in p–Pb collisions with POWHEG + Pythia,
- simulate the particle transport through the detector with GEANT,
- compare the MC Truth and Rec distributions to evaluate the fraction of Z candidates that are not reconstructed.

Plot removed

Results:

$$\epsilon_{p-Pb} = XXX, \qquad \epsilon_{Pb-p} = XXX$$

- Signal extraction: background taken as systematics,
- **Implicitly** luminosity: systematics from the evaluation of F_{norm} and σ_{MB} ,
- MC inputs: efficiency computation dependent on the choice of PDF and nPDF sets, alignment files, transport code,
- detector simulation: various corrections to account for some disagreements between the detector simulation with GEANT and what is observed in data.

All sources combined quadratically. Amount for 6.6% of the final cross section in p–Pb, 5.2% in Pb–p.

W:analysis strategy

Analysis similar in essence to the Z one:

$$\sigma_{W^{\pm} \to \mu^{\pm} \nu} = \frac{N_{W^{\pm}}}{\mathscr{L} \times \epsilon}.$$

Two differences:

- looking at single muon distribution with $p_{\rm T} > 10 \text{ GeV}/c$,
- trigger class is CMSH instead of CMUL.

Plot removed

W: signal extraction

Fit of the single muon $p_{\rm T}$ distribution:

 $f(p_{\mathrm{T}}) = N_{bkg} \cdot f_{bkg}(p_{\mathrm{T}}) + N_{\mu \leftarrow W} \cdot (f_{\mu \leftarrow W}(p_{\mathrm{T}}) + R \cdot f_{\mu \leftarrow Z}(p_{\mathrm{T}})),$

- $f_X(p_T)$: MC templates (FONLL, POWHEG),
- ► N_X: free parameters,
- R: ratio of the Z to W cross-sections from POWHEG.

Plot removed Plot removed

W: signal extraction

All templates normalized to 1, then feeded to the fit function applied to the $p_{\rm T}$ distribution. N_W extracted by integrating the W template after fit above 10 GeV/c.

Plot removed

Compared to 5.02 TeV: X times more counts in p-Pb, X times in Pb-p.

G.Taillepied

JRJC - November 24-29, 2019 - Logonna-Daoulas, France

W: signal extraction

Fitting procedure: relies on the fit range, the templates... Can be accounted for by varying several parameters.

- Fit range: test the fit stability, vary the constrains on HF / bosons,
- FONLL: vary the cross section inputs (factorization and renormalization scales),
- **POWHEG**: vary the PDF and nPDF sets.

Plot removed

Overall, several hundreds of fits. Final N_W and statistical uncertainty by averaging, systematics on signal extraction as the RMS.

Collision	N_{W^-}	N_{W^+}
p–Pb	XXX	XXX
Pb–p	XXX	XXX

Efficiency: computed the same way as for Z by comparing MC Truth and Rec distributions.

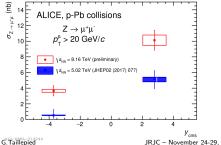
Collision	Boson	Efficiency
p–Pb	W^-	XXX
	W^+	XXX
Pb–p	W^-	XXX
	W^+	XXX

Systematics: on signal extraction: comes from the fit procedure, background analysis embedded in the procedure. Same sources for efficiency, detector response and luminosity as for *Z*. As percentages of the final cross section:

p–Pb		Pb–p	
W^-	W^+	W ⁻	W^+
XXX	XXX	XXX	XXX

Results

W⁻ boson:



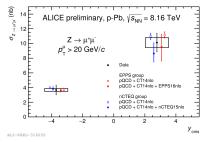
W⁺ boson:

Plot removed

Plot removed

- Similar trend at 5.02 and 8.16 TeV,
- increase of statistics leads to a reduction of the relative uncertainty on the cross sections.

JRJC - November 24-29, 2019 - Logonna-Daoulas, France


Results

W boson: charge asymmetry

Plot removed

Z boson: comparison with theory

- Same trend at both energies,
- statistical uncertainty much lower (TBC),
- to be compared to theoretical predictions.

- Measurement well reproduced by theory, both from EPPS and nCTEQ models,
- statistical limitations prevent to draw any firm conclusion on nuclear modifications.

Conclusion

Status of the Z analysis:

- preliminary plots approved,
- presented at EPS-HEP 2019, published in PoS,
- paper on the way, with Z in Pb-Pb.

Status of the *W* analysis:

- lots of recent progresses,
- still some work to do, mostly on systematics,
- statistics should allow for differential studies, aiming for 3 bins in rapidity.

Service task: writing a task in O2 for the monitoring of the MID, preparation for run 3. To be installed for the commissioning in 2020.

Thank you!