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Development of 
an advanced Compton telescope prototype 

for MeV-range gamma-ray astronomy

First part:
● What phenomena ?

● What observables ?

Second part:
● How to observe ?

● What are the challenges ?

● What am I really working on ?
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MeV range gamma-ray astronomy : 
a wide range of phenomena

Astrophysical jets
● Active galactic nuclei

● Gamma-ray bursts

● Magnetars, pulsars and 
X-ray binaries

Nucleosynthesis and chemical 
evolution of the universe

● Nuclear lines in novae and 
supernovae

● Diffuse emission of long-lived 
radioactive isotopes

Cosmic rays physics
● Propagation of cosmic rays in 

the galaxy

● Effect of low-energy cosmic rays 
in the interstellar medium
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Cosmic rays physics
● Propagation of cosmic rays in 

the galaxy

● Effect of low-energy cosmic rays 
in the interstellar medium

MeV range gamma-ray astronomy : 
a wide range of phenomena

Astrophysical jets
● Active galactic nuclei

● Gamma-ray bursts

● Magnetars, pulsars and 
X-ray binaries

Nucleosynthesis and chemical 
evolution of the universe

● Nuclear lines in novae and 
supernovae

● Diffuse emission of long-lived 
radioactive isotopesJet (beam of matter 

with relativistic speed) 
from M87, an active 
galactic nuclei
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Gamma-ray bursts (GRBs)

Vela 5B (source : nasa)

August 1963: Nuclear test ban treaty
October 1963: First Vela 1A and 1B satellites launch
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Gamma-ray bursts (GRBs)

Vela 5B (source : nasa)

First GRB detected by Vela 4 in 1967, Klebesadel et al. 1973

August 1963: Nuclear test ban treaty
October 1963: First Vela 1A and 1B satellites launch
July 1967: First GRB detection
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Gamma-ray bursts (GRBs)

Vela 5B (source : nasa)

First GRB detected by Vela 4 in 1967, Klebesadel et al. 1973

August 1963: Nuclear test ban treaty
October 1963: First Vela 1A and 1B satellites launch
July 1967: First GRB detection
1990’s: GRB distribution is isotropic



9

Gamma-ray bursts (GRBs)

4th BATSE GRB Catalog, 
Pacesias et al., ApJS 1999

Short GRBs: compact objects merging Long GRBs: supernovae

Duration (s)
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Gamma-ray bursts jets
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Gamma-ray bursts jets
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Polarization in GRBs

Mark McConnell, 8th Huntsville GRB symposium, 2016SO : Synchrotron with ordered magnetic field
CD : Compton drag
SR : Synchrotron with random magnetic field (shocks)

Measuring the polarization will rule out some models. It gives a better understanding 
of the jet mechanism, that points to the physics of the progenitor.
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Gamma-ray astronomy : What 
observables ?

Low energy Medium energy High energy Very high energy

Earth 
atmosphere as a 
calorimeter

e+-e- pair 
tracking

Coded mask 
imaging

Compton 
imaging

We always want to measure the energy of a gamma ray and 
the direction it comes from.

Focusing lens or 
mirrors
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Advanced Compton telescope

Incoming photon

θ=arccos (1−me c
2 ( 1

E2
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Compton imaging:

Advanced Compton imaging:

Electron tracking constrain the 
event circle to an event arc
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Advanced Compton telescope

Compton image of one source with an 
advanced Compton telescope 
(Zoglauer, 2006) 

Compton image of one source 
(Zoglauer, 2006) 

Compton telescope Advanced Compton telescope
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Advanced Compton telescope

Incoming photon
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Advanced Compton telescope

Incoming photon
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Part II

Current instrumental developments



19

Space mission concepts

Array of tracker+calorimeter 
modules

Big, very sensitive 
instrument

Constellation of nanosatellites 
for all-time full-sky coverage

Great for studying GRBs

One tracker+calorimeter 
module per nanosatellite
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Incoming photon

Current instrumental developments

Build a module prototype 
for a nanosatellite
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Incoming photon

Current instrumental developments

Main task of the CSNSM 
research team

Build a module prototype 
for a nanosatellite
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The calorimeter

The goals:
● High stopping power

● High spectral resolution

● High spatial resolution
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The calorimeter

The goals:
● High stopping power

● High spectral resolution

● High spatial resolution
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The calorimeter

Monolithic, inorganic 
CeBr

3
 scintillator

Pixelated 
photodetector (SiPM 
matrix or multi-
anode PMT)

Integrated 
electronics
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Interaction position determination
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Experimental setup

Radioactive 
source and 
collimator 
generate a 
gamma-ray beam

The module can 
move to span all 
possible positions 
of interaction

Module in position 2

Module in position 1
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Data characterization

● Events can have different 
morphologies

● Peaked morphologies are 
easier to use for position 
reconstruction
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Data characterization

● Events can have different morphologies

● Peaked morphologies are easier to use 
for position reconstruction

● They can be sorted using a 
morphological cut

● Unusable data represent less than 15% 
of the datasets
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Artificial neural networks (ANNs)

(z)

(x , y )
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Artificial neural networks (ANNs)

An artificial neuron
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Some meta-parameters of ANNs

● Activation function
● Training algorithm
● Number of layers
● Number of neurons
● What datasets to use ?

Examples of activation function 
(top: elu, bottom: sigmoid)
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Systematic exploration of meta-
parameters space

Worse

Better
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Reconstructing the z coordinate

Module in position 2

Module in position 1

XY Z

G
am

m
a-

ra
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be
am

Module in position 4

Module in position 3

*

*
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Some Results

Laviron et al., in prep

● For the x and y coordinates, 
an ANN with 2 hidden layers 
and 20 neurons per layer is a 
good complexity/performance 
compromise

● For the z coordinate, we 
need a more complex ANN (4 
hidden layers, 80 neuron per 
layer)

●  For each x, y and z

● coordinate we have a spatial

● resolution of σ ≈2 mm⟨ ⟩

⟨σ ⟩≈2 mm
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Spectral resolution

● Spectral resolution without 
corrections is about 9% @ 662 keV

● Good spatial resolution and proper 
characterization of the detector 
allow for corrections and down to 
4.5% @ 662 keV 
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Upcoming work

● Integration of a calorimeter module and a 
silicon tracker into a working prototype

● Build a module using SiPMs instead of a 
multi-anode PMT

● Simulations of the actual performance of a 
nanosatellite

● Test measurements as part of a particle 
accelerator experiment or during a 
stratospheric balloon flight
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Thank you for your attention
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