### **Development** of an advanced Compton telescope prototype for MeV-range gamma-ray astronomy





### MeV range gamma-ray astronomy : a wide range of phenomena

#### Astrophysical jets

- Active galactic nuclei
- Gamma-ray bursts
- Magnetars, pulsars and X-ray binaries

# Nucleosynthesis and chemical evolution of the universe

- Nuclear lines in novae and supernovae
- Diffuse emission of long-lived radioactive isotopes

#### **Cosmic rays physics**

- Propagation of cosmic rays in the galaxy
- Effect of low-energy cosmic rays in the interstellar medium

### MeV range gamma-ray astronomy : a wide range of phenomena

#### Astrophysical jets

- Active galactic nuclei
- Gamma-ray bursts
- Magnetars, pulsars and X-ray binaries

#### Cosmic

- Propagation the galaxy
- Effect of low-energy cosmic rays in the interstellar medium

Jet (beam of matter with relativistic speed) from M87, an active galactic nuclei

### MeV range gamma-ray astronomy : a wide range of phenomena

#### Astrophysical jets

- Active galactic nuclei
- Gamma-ray bursts
- Magnetars, pulsars and X-ray binaries

# Nucleosynthesis and chemical evolution of the universe

- Nuclear lines in novae and supernovae
- Diffuse emission of long-lived radioactive isotopes

#### **Cosmic rays physics**

- Propagation of cosmic rays in the galaxy
- Effect of low-energy cosmic rays in the interstellar medium



Vela 5B (source : nasa)

August 1963: Nuclear test ban treaty October 1963: First Vela 1A and 1B satellites launch







Vela 5B (source : nasa)

#### August 1963: Nuclear test ban treaty October 1963: First Vela 1A and 1B satellites launch July 1967: First GRB detection



Vela 5B (source : nasa)



First GRB detected by Vela 4 in 1967, Klebesadel et al. 1973

August 1963: Nuclear test ban treaty October 1963: First Vela 1A and 1B satellites launch July 1967: First GRB detection 1990's: GRB distribution is isotropic





9

### Gamma-ray bursts jets



### Gamma-ray bursts jets



### Polarization in GRBs





CD : Compton drag

SR : Synchrotron with random magnetic field (shocks)

Measuring the polarization will rule out some models. It gives a better understanding of the jet mechanism, that points to the physics of the progenitor.  $12^{12}$ 

# Gamma-ray astronomy : What observables ?



the direction it comes from.



Compton imaging:

$$\theta = \arccos \left| 1 - m_e c^2 \left| \frac{1}{E_2} - \frac{1}{E_1 + E_2} \right| \right|$$

Advanced Compton imaging:

Electron tracking constrain the event circle to an event arc

#### **Compton telescope**



Compton image of one source (Zoglauer, 2006)

#### **Advanced Compton telescope**



Compton image of one source with an advanced Compton telescope (Zoglauer, 2006)



$$\left|\frac{d\sigma}{d\Omega}\right|_{KN} = \frac{r_e^2 \epsilon^2}{2} (\epsilon + \epsilon^{-1} - 2\sin^2\theta \cos^2\phi)$$
  
with  $\epsilon = \frac{E}{E_0}$ 



### Part II

### Current instrumental developments

### Space mission concepts

# Array of tracker+calorimeter modules



## Big, very sensitive instrument

#### One tracker+calorimeter module per nanosatellite



Constellation of nanosatellites for all-time full-sky coverage

**Great for studying GRBs** 

### Current instrumental developments



Build a module prototype for a nanosatellite

### Current instrumental developments



Build a module prototype for a nanosatellite

### The calorimeter

### The goals:

- High stopping power
- High spectral resolution
- High spatial resolution

### The calorimeter

### The goals:

- High stopping power
- High spectral resolution
- High spatial resolution





### The calorimeter



### Interaction position determination







### **Experimental setup**

The module can move to span all possible positions of interaction

Radioactive source and collimator generate a gamma-ray beam



#### Module in position 1





#### Module in position 2

### Data characterization

- Events can have different morphologies
- Peaked morphologies are easier to use for position reconstruction







### Data characterization

- Events can have different morphologies
- Peaked morphologies are easier to use for position reconstruction
- They can be sorted using a morphological cut
- Unusable data represent less than 15% of the datasets







### Artificial neural networks (ANNs)





(x, y)(z)

### Artificial neural networks (ANNs)



#### An artificial neuron



### Some meta-parameters of ANNs

- Activation function
- Training algorithm
- Number of layers
- Number of neurons
- What datasets to use ?



Examples of activation function (top: elu, bottom: sigmoid)



### Systematic exploration of metaparameters space



### Reconstructing the z coordinate

#### Module in position 1





#### Module in position 2

#### Module in position 3



#### Module in position 4

### Some Results

- For the x and y coordinates, an ANN with 2 hidden layers and 20 neurons per layer is a good complexity/performance compromise
- For the z coordinate, we need a more complex ANN (4 hidden layers, 80 neuron per layer)
- For each x, y and z
- coordinate we have a spatial
- resolution of ⟨σ ⟩≈2 mm



Laviron et al., in prep

### Spectral resolution





- Spectral resolution without corrections is about 9% @ 662 keV
- Good spatial resolution and proper characterization of the detector allow for corrections and down to 4.5% @ 662 keV



# Upcoming work

- Integration of a calorimeter module and a silicon tracker into a working prototype
- Build a module using SiPMs instead of a multi-anode PMT
- Simulations of the actual performance of a nanosatellite
- Test measurements as part of a particle accelerator experiment or during a stratospheric balloon flight





### Thank you for your attention