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Introduction

How people see machine learning?
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Introduction

What is machine learning (ML)?

ML is essentially a complicated parameter estimate.
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Nuclear models
Main task in nuclear physics is to adjust parameters in theoretical models.

Example 1: Liquid Drop (LD)

Bth(N,Z) = avA− asA
2/3 − ac

Z(Z − 1)

A1/3
− aa

(N − Z)2

A
− δmod(Z , 2) + mod(N, 2)− 1

A1/2
,

Example 2: Duflo-Zucker (DZ)

Bth = a1VC + a2(M + S)− a3
M

ρ
− a4VT + a5VTS + a6s3 − a7

s3

ρ
+ a8s4 + a9d4 + a10VP .

[J. Duflo and A. P. Zuker; Phys. Rev. C 52 (1995) R23]

My (our) goal

Estimate the parameters ai in the best possible way

Estimate errors and correlations among parameters

Improve the models
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Non Parametric Bootstrap (NPB)

Bootstrap is a simple Monte-Carlo with no smart acceptance/rejection
method

Hypothesis

A sample data originates from a population and they keep its features!

[A.P. An introduction to bootstrap for nuclear physics. J. Phys. G 46, 052001(2019) ]

A.P. NPB-MCMC-GPE October 30, 2019 5 / 32



Parameter estimate (how NPB does the dirty job for you)

(Classical) Set up

Estimate 5-parameters of LD model This is a linear model. We estimate parameters as

χ2 =
∑

N,Z∈data-set

[Bexp(N,Z)− Bth(N,Z)]2

σ2(N,Z)
.

(σ2(N,Z) = for simplicity)

Minimise χ2

Build Hessian matrix (parameter derivatives) [ Numerically dangerous!]

Build Jacobian matrix for the model around minimum [ Numerically dangerous!]

Require explicit modelling of data-correlations in σ2 matrix! [ Complicated!]

Error analysis

[Barlow, R. J. Statistics: a guide to the use of statistical methods in the physical sciences . John Wiley & Sons.(1993). ]
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A simple bootstrap solution

1 We do 1 fit and we obtain residuals

χ2 =
∑

N,Z∈data-set

[Bexp(N,Z)− Bth(N,Z)]2 .

Bexp = Bth(x, p0) + E(x) ,

2 We bootstrap the residuals E(x)→ E∗(x)

3 We create new sets of experimental binding energies
B∗exp = Bexp + E∗(x) ,

4 We fit new masses with our model

χ2 =
∑

N,Z∈data-set

[
B∗exp(N,Z)− Bth(N,Z)

]2
.

5 Repeat the operation 104 times
6 Make nice histograms
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Results

Parameter [MeV] Error [MeV]

av 15.69 ±0.025
as 17.75 ±0.08
ac 0.713 ±0.002
aa 23.16 ±0.06
δ 11.8 ±0.9

We get the same results using linear fit procedure (good benchmark).
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Corner plots for free

The data-set of 104 can be seen as a corner plot (no marginalisation!)
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Advantages

I get corner plots for free

I do not need to calculate derivatives in parameter space! Covariance
comes out automatically from 2D histograms!

I do not need any parabolic approximation to do error propagation. I
have access to full Monte Carlo error propagation for free! (I have
actually 104 models I can use now!)

Problems? (not really... let’s move on)

We assumed σ = 1. Using data dependent sigmas... not easy

We have an homogenous χ2. Not the case in EDF fitting
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A smarter Monte Carlo
By equipping a memory and a smart way of choosing (Metropolis) we obtain
Markov-Chain-Monte-Carlo (MCMC).

More efficient than NPB
More advanced MCMC on the market → speed up in the process
We get same results as NPB

[M. Shelley, P. Becker, A. Gration and AP (2018). Advanced statistical methods to fit nuclear models. arXiv:1811.09130. ]
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Let’s go back to our hypothesis
The residuals are assumed to be normally distributed N (0, σ) σ = 0.572 keV.

Bexp = Bth(x, p0) + E(x) ,
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Residuals are not normally distributed (Kolmogorov test)

σ2
A =

1

NA

∑
Z+N=A

(E(N,Z)− EA(A))2 .
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We work on σ2
A

We reduce to a 1-D problem
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BB in 2D

We have repeated the analysis on the mass table (no averaging) using a
BB methods in 2D. The results do not changing remarkably
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How to handle correlations in data?

Bootstrap can handle correlations

Several variants:

Frequency Domain Bootstrap [G. F Bertsch and D. Bingham (2017). Estimating parameter

uncertainty in binding-energy models by the frequency-domain bootstrap. Phys. rev. lett., 119, 252501. . ]

Block-Bootstrap

Wild Bootstrap

....

MCMC can handle correlations?

It is a question for you! I have no idea.

A.P. NPB-MCMC-GPE October 30, 2019 14 / 32



Block-Bootstrap

Given a data-set composed by n elements {X1,X2, . . . ,Xn}, I consider an
integer l satisfying 1 ≤ l ≤ n. I define BN overlapping blocks of length l as

B1 = (X1,X2, . . . ,Xl)

B1 = (X2,X3, . . . ,Xl+1)

. . . = . . .

BN = (Xn−l+1, . . . ,Xn)

where N = n − l + 1.
We treat the blocks as uncorrelated. What size of blocks?
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Statistic vs Systematic error
To assess the quality of our estimate we compare theory with experiment

NPB error propagation

1σ 2σ 3σ
Full chart 13.6% 27.2% 39.5%

50 ≤ A < 150 14.7% 26.8% 37.2%
20 ≤ Z ≤ 50 11.5 % 22.2% 31.4%

A ≥ 150 14.8% 30.8 % 45.8%

BB estimate

1σ 2σ 3σ
Full chart 34.5% 60.4% 77.9%

50 ≤ A ≤ 150 31.8% 55.5% 74.2%
20 ≤ Z ≤ 50 27.9 % 52.8% 71.9%

A > 150 39.9% 69.4 % 85.6%
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[D. Neil, K. Medler, AP, C. Barton Impact of statistical uncertainties on the composition of the outer crust of a neutron star On
my desk waiting to go.... ]
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All very nice, but...

Back to square one

Bexp(N,Z ) = Bth(N,Z ) + ε(N,Z )

A major effort to get the best estimate for ε(N,Z )

We did not touch the residuals. What is the model has a bias?

Let’s go to square two

Bexp(N,Z ) = Bth(N,Z ) + fML(N,Z ) + ε̃(N,Z )

We add a correction to the model fML(N,Z )→ Neural Network/ Gaussian
Process Emulator

[L. Neufcourt, Y. Cao, W. Nazarewicz and F. Viens (2018). Bayesian approach to model-based extrapolation of nuclear

observables. Physical Review C, 98(3), 034318. ]
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Neural Network (NN)

Definition

A NN is a system of connected algorithms (nodes/neurons) designed to
mimic the working of a biological brain

Take inputs and multiply by
weights xi → xiwi

Sum
∑

i xiwi

Pass to activation function
y = f (

∑
xiwi + b)

Compare output
MSE = 1

n

∑
i (ytrue − ypred)2

Find wi to minimise MSE
[K. Hornik; Neural networks 4 (1991): 251-257 / K. Hornik, M. Stinchcombe, H. White; Neural Networks 2 (1989)359-366. ]
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DZ+NN

We aim at predicting masses in NS 25 ≤ Z ≤ 50 .
We use a Multi Layer Perceptron (easy to use... simple test) [weka]

Parameters (only for real aficionados)

Hidden layers = 2, with 45 nodes in the first and 84 nodes in the second layer.
Learning rate = 0.29
Momentum = 0.47
Training time = 6000
Percentage split = 66

[ R. Utama and J. Piekarewicz; Phys. Rev. C 96 (2017): 044308.]
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(Dis)Advantages

What do we conclude?

NN is created to learn patterns in data (residuals)

NN works nicely in interpolations.

Residual are more similar to white noise

A word of caution

Overfitting is a real danger (so many parameters in NN... no real
rule!)

NN can not predict new physics (i.e a new shell closure outside
training region)

Can we model physically what NN has found?

At large extrapolations the NN goes to zero (we fit residuals)
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Gaussian Process Emulator

Give a set of point (red). How to predict (blue), using no (little)
assumptions on the data? (i.e. f (x) = ax + b)

y(x) = f (x) +N (0, σ2)
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Definitions

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}

f (x) ∈ R and X = Rn [extension to multi-layers exists]
A Gaussian process is a stochastic process with Gaussian distribution

(f (x1), . . . f (xn)) ≈ N (µ(x), k(x , x ′))

We can rescale the data so that µ = 0 and we assume

k(x , x ′) = σ2
f exp

[
−(x − x ′)2

2l2

]
+ σ2

nδ(x , x ′)

l is correlation length. Obtained via Maximum Likelihood Estimator (MLE)
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What’s the value y ∗ in x∗?

The conditional probability reads

y∗|y ≈ N (K∗K
−1y,K∗∗ − K∗K

−1KT
∗ )

where

K =

 k(x1, x1) k(x1, x2) . . . k(x1, xn)
. . . . . . . . . . . .

k(xn, x1) k(xn, x2) . . . k(xn, xn)


K∗ = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xn)] K∗∗ = k(x∗, x∗)
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Application: learning a χ2 surface
We aim at estimating the parameters of a model

Simplified Liquid Drop

B/A = av − asA
−1/3

N=Z only (from 2H to 100Sn)

No Coulomb/No pairing

→ 2 D model... easy to make plots!

Least square fitting

χ2 =
∑
nuclei

(
Oexp −Oth

)2

No error assumed (for simplicity) on masses .... toy model!!!

av = 11.16MeV as = 9.60MeV
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GPE for χ2

Main steps...

Run GPE to emulate 2D surface of χ2

Iterative procedure guided by acquisition function

Use the real simulation for a set of point selected by GPE

Accumulate GPE iterations around minimum (not known a priori!)

Refine the minimum using gradient method

Why?

GPE scans the whole surface (contrary to a gradient

GPE should detect more minima at once (our expectation)

GPE should require a lower number of iterations compared to standard
minimisation routines

[A. Gration and M. I Wilkinson, (2019). Dynamical modelling of dwarf spheroidal galaxies using Gaussian-process emulation.
MNRAS 485(4), 4878-4892. ]
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+5 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+10 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+20 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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GPE vs Exact

GPE
Exact
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Conclusions

GPE can be a real advantage to learn a χ2 surface → pre-optimisation
process avoiding getting trapped in local minima (great expectations!)
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Conclusions & Ideas

Several advanced statistical methods on the market

There is no free lunch!
All methods rely on approximations/hypothesis. Do not use them as black-boxes

NN/GPE are very powerful → need supervision of a physicist!

There is no intelligence, but a sophisticated fitting (parameter estimate)

York team: shopping list
We aim at learning new methods and apply them to nuclear problems

(Dream) detector calibration

(Plausible) apply GPE to fit functionals

(Realistic) build simple NN/GPE to complete models and improve local
extrapolations

Happy to share knowledge/ideas and desperately seeking for manpower (students)
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Let’s do an experiment!

Let’s assume we have a population following an exponential distribution

PDF (x) = λe−λx

Let’s assume λ = 2
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We run the experiment to obtain the data

value 0.068 1.649 0.058 0.165 0.522 0.040 1.078 0.512 0.354 0.449
position 1 2 3 4 5 6 7 8 9 10

Table: Random values extracted from exponential distribution with mean 1
λ = 1

2 .

To calculate the mean of the parent distribution, I use the estimator

µ̂ =
1

N

N∑
i=1

Xi = 0.489 (1)

In this case the error on the man is know

σM =
σ√
N

= 0.154 (2)
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Not always so lucky....

Let’s use Bootstrap to calculate the errors with no prior knowledge!

Bootstrap in action
1 Use a Monte Carlo to re-sample your data-set

X = {0.068, 1.649, 0.058, 0.165, 0.522, 0.040, 1.078, 0.512, 0.354, 0.449}

X ∗1 = (0.068, 1.649, 1.078, 0.165, 0.522, 1.649, 0.058, 0.512, 0.354, 0.449) ,

X ∗2 = (0.449, 1.649, 0.354, 0.165, 0.522, 1.649, 0.058, 0.512, 0.354, 0.068) ,

X ∗3 = (0.068, 1.649, 1.078, 0.165, 0.522, 0.068, 0.058, 0.512, 0.354, 0.449) ,
. . .

2 Apply the estimator to each of the sets X ∗n
3 Make an histogram and admire the empirical distribution of the estimator
4 Assume the empirical is equal to the real distribution of the estimator

5 Use 68% quantile to calculate error bars
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Results
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Use the empirical PDF!

We extract the mean of the histogram and 68% quantile µ̄∗ = 0.4890.159
−0.146.

This is called Non-parametric Bootstrap (we made no assumption on the
shape of the PDF)
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Some warning

Big samples are always better. N ≥ 10− 15.
Re-sampling means to perform combinations.(

2n − 1
n

)
=

(2n − 1)!

n!(n − 1)!
. (3)

Repeated combinations add no info to the problem!

Some values

For n=5 we have 126 combinations.
For n=10 we have 92378 combinations.
For n=15 we have 77558760 combinations

How many MC you need? At least 103/104 to avoid adding extra bias!
Very simple!
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Results
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We observe saturation... l should have same size as correlation length of
the data.
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Errors

Parameter [MeV] Error (uncorrelated) [MeV] Error (correlated) [MeV]

av 15.69 ±0.025 ±0.14
as 17.75 ±0.08 ±0.44
ac 0.713 ±0.002 ±0.009
aa 23.16 ±0.06 ±0.35
δ 11.8 ±0.9 ±0.80

Errors are larger (1 order of magnitude) → it impacts error propagation on
observables. If the model is wrong... it is still wrong, but with better error
bars

Is there any effect?

The answer is on the next slide!
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