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Introduction

How people see machine learning?
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Introduction

What is machine learning (ML)?

ML is essentially a complicated parameter estimate.
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Nuclear models
Main task in nuclear physics is to adjust parameters in theoretical models.

Example 1: Liquid Drop (LD)

Bth(N,Z) = avA− asA
2/3 − ac

Z(Z − 1)

A1/3
− aa

(N − Z)2

A
− δmod(Z , 2) + mod(N, 2)− 1

A1/2
,

Example 2: Duflo-Zucker (DZ)

Bth = a1VC + a2(M + S)− a3
M

ρ
− a4VT + a5VTS + a6s3 − a7

s3

ρ
+ a8s4 + a9d4 + a10VP .

[J. Duflo and A. P. Zuker; Phys. Rev. C 52 (1995) R23]

My (our) goal

Estimate the parameters ai in the best possible way

Estimate errors and correlations among parameters

Improve the models
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Non Parametric Bootstrap (NPB)

Bootstrap is a simple Monte-Carlo with no smart acceptance/rejection
method

Hypothesis

A sample data originates from a population and they keep its features!

[A.P. An introduction to bootstrap for nuclear physics. J. Phys. G 46, 052001(2019) ]

A.P. NPB-MCMC-GPE October 30, 2019 5 / 32



Parameter estimate (how NPB does the dirty job for you)

(Classical) Set up

Estimate 5-parameters of LD model This is a linear model. We estimate parameters as

χ2 =
∑

N,Z∈data-set

[Bexp(N,Z)− Bth(N,Z)]2

σ2(N,Z)
.

(σ2(N,Z) = for simplicity)

Minimise χ2

Build Hessian matrix (parameter derivatives) [ Numerically dangerous!]

Build Jacobian matrix for the model around minimum [ Numerically dangerous!]

Require explicit modelling of data-correlations in σ2 matrix! [ Complicated!]

Error analysis

[Barlow, R. J. Statistics: a guide to the use of statistical methods in the physical sciences . John Wiley & Sons.(1993). ]
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A simple bootstrap solution

1 We do 1 fit and we obtain residuals

χ2 =
∑

N,Z∈data-set

[Bexp(N,Z)− Bth(N,Z)]2 .

Bexp = Bth(x, p0) + E(x) ,

2 We bootstrap the residuals E(x)→ E∗(x)

3 We create new sets of experimental binding energies
B∗exp = Bexp + E∗(x) ,

4 We fit new masses with our model

χ2 =
∑

N,Z∈data-set

[
B∗exp(N,Z)− Bth(N,Z)

]2
.

5 Repeat the operation 104 times
6 Make nice histograms
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Results

Parameter [MeV] Error [MeV]

av 15.69 ±0.025
as 17.75 ±0.08
ac 0.713 ±0.002
aa 23.16 ±0.06
δ 11.8 ±0.9

We get the same results using linear fit procedure (good benchmark).
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Corner plots for free

The data-set of 104 can be seen as a corner plot (no marginalisation!)
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Advantages

I get corner plots for free

I do not need to calculate derivatives in parameter space! Covariance
comes out automatically from 2D histograms!

I do not need any parabolic approximation to do error propagation. I
have access to full Monte Carlo error propagation for free! (I have
actually 104 models I can use now!)

Problems? (not really... let’s move on)

We assumed σ = 1. Using data dependent sigmas... not easy

We have an homogenous χ2. Not the case in EDF fitting
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A smarter Monte Carlo
By equipping a memory and a smart way of choosing (Metropolis) we obtain
Markov-Chain-Monte-Carlo (MCMC).

More efficient than NPB
More advanced MCMC on the market → speed up in the process
We get same results as NPB

[M. Shelley, P. Becker, A. Gration and AP (2018). Advanced statistical methods to fit nuclear models. arXiv:1811.09130. ]
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Let’s go back to our hypothesis
The residuals are assumed to be normally distributed N (0, σ) σ = 0.572 keV.

Bexp = Bth(x, p0) + E(x) ,
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Residuals are not normally distributed (Kolmogorov test)

σ2
A =

1

NA

∑
Z+N=A

(E(N,Z)− EA(A))2 .
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We work on σ2
A

We reduce to a 1-D problem
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BB in 2D

We have repeated the analysis on the mass table (no averaging) using a
BB methods in 2D. The results do not changing remarkably
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How to handle correlations in data?

Bootstrap can handle correlations

Several variants:

Frequency Domain Bootstrap [G. F Bertsch and D. Bingham (2017). Estimating parameter

uncertainty in binding-energy models by the frequency-domain bootstrap. Phys. rev. lett., 119, 252501. . ]

Block-Bootstrap

Wild Bootstrap

....

MCMC can handle correlations?

It is a question for you! I have no idea.
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Block-Bootstrap

Given a data-set composed by n elements {X1,X2, . . . ,Xn}, I consider an
integer l satisfying 1 ≤ l ≤ n. I define BN overlapping blocks of length l as

B1 = (X1,X2, . . . ,Xl)

B1 = (X2,X3, . . . ,Xl+1)

. . . = . . .

BN = (Xn−l+1, . . . ,Xn)

where N = n − l + 1.
We treat the blocks as uncorrelated. What size of blocks?
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Statistic vs Systematic error
To assess the quality of our estimate we compare theory with experiment

NPB error propagation

1σ 2σ 3σ
Full chart 13.6% 27.2% 39.5%

50 ≤ A < 150 14.7% 26.8% 37.2%
20 ≤ Z ≤ 50 11.5 % 22.2% 31.4%

A ≥ 150 14.8% 30.8 % 45.8%

BB estimate

1σ 2σ 3σ
Full chart 34.5% 60.4% 77.9%

50 ≤ A ≤ 150 31.8% 55.5% 74.2%
20 ≤ Z ≤ 50 27.9 % 52.8% 71.9%

A > 150 39.9% 69.4 % 85.6%
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[D. Neil, K. Medler, AP, C. Barton Impact of statistical uncertainties on the composition of the outer crust of a neutron star On
my desk waiting to go.... ]
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All very nice, but...

Back to square one

Bexp(N,Z ) = Bth(N,Z ) + ε(N,Z )

A major effort to get the best estimate for ε(N,Z )

We did not touch the residuals. What is the model has a bias?

Let’s go to square two

Bexp(N,Z ) = Bth(N,Z ) + fML(N,Z ) + ε̃(N,Z )

We add a correction to the model fML(N,Z )→ Neural Network/ Gaussian
Process Emulator

[L. Neufcourt, Y. Cao, W. Nazarewicz and F. Viens (2018). Bayesian approach to model-based extrapolation of nuclear

observables. Physical Review C, 98(3), 034318. ]
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Neural Network (NN)

Definition

A NN is a system of connected algorithms (nodes/neurons) designed to
mimic the working of a biological brain

Take inputs and multiply by
weights xi → xiwi

Sum
∑

i xiwi

Pass to activation function
y = f (

∑
xiwi + b)

Compare output
MSE = 1

n

∑
i (ytrue − ypred)2

Find wi to minimise MSE
[K. Hornik; Neural networks 4 (1991): 251-257 / K. Hornik, M. Stinchcombe, H. White; Neural Networks 2 (1989)359-366. ]
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DZ+NN

We aim at predicting masses in NS 25 ≤ Z ≤ 50 .
We use a Multi Layer Perceptron (easy to use... simple test) [weka]

Parameters (only for real aficionados)

Hidden layers = 2, with 45 nodes in the first and 84 nodes in the second layer.
Learning rate = 0.29
Momentum = 0.47
Training time = 6000
Percentage split = 66

[ R. Utama and J. Piekarewicz; Phys. Rev. C 96 (2017): 044308.]
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(Dis)Advantages

What do we conclude?

NN is created to learn patterns in data (residuals)

NN works nicely in interpolations.

Residual are more similar to white noise

A word of caution

Overfitting is a real danger (so many parameters in NN... no real
rule!)

NN can not predict new physics (i.e a new shell closure outside
training region)

Can we model physically what NN has found?

At large extrapolations the NN goes to zero (we fit residuals)
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Gaussian Process Emulator

Give a set of point (red). How to predict (blue), using no (little)
assumptions on the data? (i.e. f (x) = ax + b)

y(x) = f (x) +N (0, σ2)
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Definitions

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

f = {f (x) : x ∈ X}

f (x) ∈ R and X = Rn [extension to multi-layers exists]
A Gaussian process is a stochastic process with Gaussian distribution

(f (x1), . . . f (xn)) ≈ N (µ(x), k(x , x ′))

We can rescale the data so that µ = 0 and we assume

k(x , x ′) = σ2
f exp

[
−(x − x ′)2

2l2

]
+ σ2

nδ(x , x ′)

l is correlation length. Obtained via Maximum Likelihood Estimator (MLE)
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What’s the value y ∗ in x∗?

The conditional probability reads

y∗|y ≈ N (K∗K
−1y,K∗∗ − K∗K

−1KT
∗ )

where

K =

 k(x1, x1) k(x1, x2) . . . k(x1, xn)
. . . . . . . . . . . .

k(xn, x1) k(xn, x2) . . . k(xn, xn)


K∗ = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xn)] K∗∗ = k(x∗, x∗)
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Application: learning a χ2 surface
We aim at estimating the parameters of a model

Simplified Liquid Drop

B/A = av − asA
−1/3

N=Z only (from 2H to 100Sn)

No Coulomb/No pairing

→ 2 D model... easy to make plots!

Least square fitting

χ2 =
∑
nuclei

(
Oexp −Oth

)2

No error assumed (for simplicity) on masses .... toy model!!!

av = 11.16MeV as = 9.60MeV
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GPE for χ2

Main steps...

Run GPE to emulate 2D surface of χ2

Iterative procedure guided by acquisition function

Use the real simulation for a set of point selected by GPE

Accumulate GPE iterations around minimum (not known a priori!)

Refine the minimum using gradient method

Why?

GPE scans the whole surface (contrary to a gradient

GPE should detect more minima at once (our expectation)

GPE should require a lower number of iterations compared to standard
minimisation routines

[A. Gration and M. I Wilkinson, (2019). Dynamical modelling of dwarf spheroidal galaxies using Gaussian-process emulation.
MNRAS 485(4), 4878-4892. ]
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+5 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+10 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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+20 points
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Vocabulary

Posterior mean → χ2 surface produced by GPE

Posterior sd. → predicted variance of the surface

Acquisition function → next point required by GPE
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GPE vs Exact

GPE
Exact

6 8 10 12 14 16 18 20
A_v

6

8

10

12

14

16

18

20

A
_s

0

450

900

1350

1800

2250

2700

3150

3600

4050

Conclusions

GPE can be a real advantage to learn a χ2 surface → pre-optimisation
process avoiding getting trapped in local minima (great expectations!)
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Conclusions & Ideas

Several advanced statistical methods on the market

There is no free lunch!
All methods rely on approximations/hypothesis. Do not use them as black-boxes

NN/GPE are very powerful → need supervision of a physicist!

There is no intelligence, but a sophisticated fitting (parameter estimate)

York team: shopping list
We aim at learning new methods and apply them to nuclear problems

(Dream) detector calibration

(Plausible) apply GPE to fit functionals

(Realistic) build simple NN/GPE to complete models and improve local
extrapolations

Happy to share knowledge/ideas and desperately seeking for manpower (students)
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Let’s do an experiment!

Let’s assume we have a population following an exponential distribution

PDF (x) = λe−λx

Let’s assume λ = 2
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We run the experiment to obtain the data

value 0.068 1.649 0.058 0.165 0.522 0.040 1.078 0.512 0.354 0.449
position 1 2 3 4 5 6 7 8 9 10

Table: Random values extracted from exponential distribution with mean 1
λ = 1

2 .

To calculate the mean of the parent distribution, I use the estimator

µ̂ =
1

N

N∑
i=1

Xi = 0.489 (1)

In this case the error on the man is know

σM =
σ√
N

= 0.154 (2)
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Not always so lucky....

Let’s use Bootstrap to calculate the errors with no prior knowledge!

Bootstrap in action
1 Use a Monte Carlo to re-sample your data-set

X = {0.068, 1.649, 0.058, 0.165, 0.522, 0.040, 1.078, 0.512, 0.354, 0.449}

X ∗1 = (0.068, 1.649, 1.078, 0.165, 0.522, 1.649, 0.058, 0.512, 0.354, 0.449) ,

X ∗2 = (0.449, 1.649, 0.354, 0.165, 0.522, 1.649, 0.058, 0.512, 0.354, 0.068) ,

X ∗3 = (0.068, 1.649, 1.078, 0.165, 0.522, 0.068, 0.058, 0.512, 0.354, 0.449) ,
. . .

2 Apply the estimator to each of the sets X ∗n
3 Make an histogram and admire the empirical distribution of the estimator
4 Assume the empirical is equal to the real distribution of the estimator

5 Use 68% quantile to calculate error bars
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Results
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Use the empirical PDF!

We extract the mean of the histogram and 68% quantile µ̄∗ = 0.4890.159
−0.146.

This is called Non-parametric Bootstrap (we made no assumption on the
shape of the PDF)
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Some warning

Big samples are always better. N ≥ 10− 15.
Re-sampling means to perform combinations.(

2n − 1
n

)
=

(2n − 1)!

n!(n − 1)!
. (3)

Repeated combinations add no info to the problem!

Some values

For n=5 we have 126 combinations.
For n=10 we have 92378 combinations.
For n=15 we have 77558760 combinations

How many MC you need? At least 103/104 to avoid adding extra bias!
Very simple!
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Results
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We observe saturation... l should have same size as correlation length of
the data.
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Errors

Parameter [MeV] Error (uncorrelated) [MeV] Error (correlated) [MeV]

av 15.69 ±0.025 ±0.14
as 17.75 ±0.08 ±0.44
ac 0.713 ±0.002 ±0.009
aa 23.16 ±0.06 ±0.35
δ 11.8 ±0.9 ±0.80

Errors are larger (1 order of magnitude) → it impacts error propagation on
observables. If the model is wrong... it is still wrong, but with better error
bars

Is there any effect?

The answer is on the next slide!

A.P. NPB-MCMC-GPE October 30, 2019 40 / 32


	Appendix

