NPB, MCMC, GPE and other funny acronyms Complicated methods for simple tasks

A. Pastore, C. Barton, $\sum_{i=1}^{\infty}$ M. Phys ${ }_{i}$

Department of Physics, University of York, Heslington, York, YO10 5DD, UK

October 30, 2019

Machine Learning et Physique Nucléaire, Orsay, 29-30 Oct. 2019

Introduction

How people see machine learning?

Introduction

What is machine learning (ML)?

EDF fitting...

Figure: Picture by J. Dechargé, from "Approches de champ moyen et au-delà", J.-F. Berger, École Joliot-Curie: "Les noyaux en pleine forme", 1991.

ML is essentially a complicated parameter estimate.

Nuclear models

Main task in nuclear physics is to adjust parameters in theoretical models.

Example 1: Liquid Drop (LD)

$$
B_{t h}(N, Z)=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}-a_{s} \frac{(N-Z)^{2}}{A}-\delta \frac{\bmod (Z, 2)+\bmod (N, 2)-1}{A^{1 / 2}}
$$

Example 2: Duflo-Zucker (DZ)

$B_{t h}=a_{1} V_{C}+a_{2}(M+S)-a_{3} \frac{M}{\rho}-a_{4} V_{T}+a_{5} V_{T S}+a_{6} S_{3}-a_{7} \frac{S_{3}}{\rho}+a_{8} s_{4}+a_{9} d_{4}+a_{10} V_{P}$.
[J. Duflo and A. P. Zuker; Phys. Rev. C 52 (1995) R23]

My (our) goal

- Estimate the parameters a_{i} in the best possible way
- Estimate errors and correlations among parameters
- Improve the models

Non Parametric Bootstrap (NPB)

Bootstrap is a simple Monte-Carlo with no smart acceptance/rejection method

Hypothesis

A sample data originates from a population and they keep its features!

```
                                    Monographs
                    on Statistics and
                    Applied Probability 57
An
Introduction
to the
Bootstrap
Bradley Efron
Robert J. Tibshirani
```


Parameter estimate (how NPB does the dirty job for you)

(Classical) Set up

Estimate 5-parameters of LD model This is a linear model. We estimate parameters as

$$
\chi^{2}=\sum_{N, Z \in \text { data-set }} \frac{\left[B_{\exp }(N, Z)-B_{t h}(N, Z)\right]^{2}}{\sigma^{2}(N, Z)} .
$$

$\left(\sigma^{2}(N, Z)=\right.$ for simplicity $)$

- Minimise χ^{2}
- Build Hessian matrix (parameter derivatives) [Numerically dangerous!]
- Build Jacobian matrix for the model around minimum [Numerically dangerous!]
- Require explicit modelling of data-correlations in σ^{2} matrix! [Complicated!]
- Error analysis

A simple bootstrap solution

(1) We do 1 fit and we obtain residuals

$$
\chi^{2}=\sum_{N, Z \in \text { data-set }}\left[B_{\exp }(N, Z)-B_{t h}(N, Z)\right]^{2} .
$$

$$
B_{\text {exp }}=B_{t h}\left(\mathbf{x}, \mathbf{p}_{0}\right)+\mathcal{E}(\mathbf{x}),
$$

(2) We bootstrap the residuals $\mathcal{E}(\mathbf{x}) \rightarrow \mathcal{E}^{*}(\mathbf{x})$
(3) We create new sets of experimental binding energies

$$
B *_{\exp }=B_{\exp }+\mathcal{E}^{*}(\mathbf{x}),
$$

(9) We fit new masses with our model

$$
\chi^{2}=\sum_{N, Z \in \text { data-set }}\left[B_{\text {exp }}^{*}(N, Z)-B_{t h}(N, Z)\right]^{2} .
$$

(5) Repeat the operation 10^{4} times
(0) Make nice histograms

Results

Parameter	$[\mathrm{MeV}]$	Error $[\mathrm{MeV}]$
a_{v}	15.69	± 0.025
a_{s}	17.75	± 0.08
a_{c}	0.713	± 0.002
a_{a}	23.16	± 0.06
δ	11.8	± 0.9

We get the same results using linear fit procedure (good benchmark).

Corner plots for free

The data-set of 10^{4} can be seen as a corner plot (no marginalisation!)

Advantages

- I get corner plots for free
- I do not need to calculate derivatives in parameter space! Covariance comes out automatically from 2D histograms!
- I do not need any parabolic approximation to do error propagation. I have access to full Monte Carlo error propagation for free! (I have actually 10^{4} models I can use now!)

Problems? (not really... let's move on)

- We assumed $\sigma=1$. Using data dependent sigmas... not easy
- We have an homogenous χ^{2}. Not the case in EDF fitting

A smarter Monte Carlo

By equipping a memory and a smart way of choosing (Metropolis) we obtain Markov-Chain-Monte-Carlo (MCMC).

- More efficient than NPB
- More advanced MCMC on the market \rightarrow speed up in the process
- We get same results as NPB

Let's go back to our hypothesis

The residuals are assumed to be normally distributed $\mathcal{N}(0, \sigma) \sigma=0.572 \mathrm{keV}$.

$$
B_{\exp }=B_{t h}\left(\mathbf{x}, \mathbf{p}_{0}\right)+\mathcal{E}(\mathbf{x}),
$$

Residuals are not normally distributed (Kolmogorov test)

$$
\sigma_{A}^{2}=\frac{1}{N_{A}} \sum_{Z+N=A}\left(\mathcal{E}(N, Z)-\mathcal{E}_{A}(A)\right)^{2}
$$

We work on σ_{A}^{2}

We reduce to a 1-D problem

$B B$ in 2D

We have repeated the analysis on the mass table (no averaging) using a BB methods in 2D. The results do not changing remarkably

How to handle correlations in data?

Bootstrap can handle correlations

Several variants:

- Frequency Domain Bootstrap [G. F Bertsch and D. Bingham (2017). Estimating parameter uncertainty in binding-energy models by the frequency-domain bootstrap. Phys. rev. lett., 119, 252501. .]
- Block-Bootstrap
- Wild Bootstrap
-

MCMC can handle correlations?

It is a question for you! I have no idea.

Block-Bootstrap

Given a data-set composed by n elements $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, I consider an integer $/$ satisfying $1 \leq I \leq n$. I define \mathcal{B}_{N} overlapping blocks of length I as

$$
\begin{array}{rlc}
\mathcal{B}_{1} & = & \left(X_{1}, X_{2}, \ldots, X_{l}\right) \\
\mathcal{B}_{1} & = & \left(X_{2}, X_{3}, \ldots, X_{l+1}\right) \\
\ldots & = & \cdots \\
\mathcal{B}_{N} & = & \\
\hline
\end{array}
$$

where $N=n-I+1$.
We treat the blocks as uncorrelated. What size of blocks?

Statistic vs Systematic error

To assess the quality of our estimate we compare theory with experiment

NPB error propagation

BB estimate

	1σ	2σ	3σ
Full chart	13.6%	27.2%	39.5%
$50 \leq A<150$	14.7%	26.8%	37.2%
$20 \leq Z \leq 50$	11.5%	22.2%	31.4%
$A \geq 150$	14.8%	30.8%	45.8%

	1σ	2σ	3σ
Full chart	34.5%	60.4%	77.9%
$50 \leq A \leq 150$	31.8%	55.5%	74.2%
$20 \leq Z \leq 50$	27.9%	52.8%	71.9%
$A>150$	39.9%	69.4%	85.6%

[D. Neil, K. Medler, AP, C. Barton Impact of statistical uncertainties on the composition of the outer crust of a neutron star On my desk waiting to go....]

All very nice, but...

Back to square one

$$
B_{\exp }(N, Z)=B_{t h}(N, Z)+\varepsilon(N, Z)
$$

A major effort to get the best estimate for $\varepsilon(N, Z)$
We did not touch the residuals. What is the model has a bias?
Let's go to square two

$$
B_{\exp }(N, Z)=B_{t h}(N, Z)+f_{M L}(N, Z)+\tilde{\varepsilon}(N, Z)
$$

We add a correction to the model $f_{M L}(N, Z) \rightarrow$ Neural Network/ Gaussian Process Emulator

[^0]
Neural Network (NN)

Definition

A NN is a system of connected algorithms (nodes/neurons) designed to mimic the working of a biological brain

- Take inputs and multiply by weights $x_{i} \rightarrow x_{i} w_{i}$

Inputs
Output

- Sum $\sum_{i} x_{i} w_{i}$
- Pass to activation function

$$
y=f\left(\sum x_{i} w_{i}+b\right)
$$

- Compare output

$$
M S E=\frac{1}{n} \sum_{i}\left(y_{\text {true }}-y_{\text {pred }}\right)^{2}
$$

- Find w_{i} to minimise MSE
[K. Hornik; Neural networks 4 (1991): 251-257 / K. Hornik, M. Stinchcombe, H. White; Neural Networks 2 (1989)359-366.]

DZ+NN

We aim at predicting masses in NS $25 \leq Z \leq 50$.
We use a Multi Layer Perceptron (easy to use... simple test) [weka]

Parameters (only for real aficionados)

Hidden layers $=2$, with 45 nodes in the first and 84 nodes in the second layer.
Learning rate $=0.29$
Momentum $=0.47$
Training time $=6000$
Percentage split $=66$
[R. Utama and J. Piekarewicz; Phys. Rev. C 96 (2017): 044308.]

(Dis)Advantages

What do we conclude?

- NN is created to learn patterns in data (residuals)
- NN works nicely in interpolations.
- Residual are more similar to white noise

A word of caution

- Overfitting is a real danger (so many parameters in NN... no real rule!)
- NN can not predict new physics (i.e a new shell closure outside training region)
- Can we model physically what NN has found?
- At large extrapolations the NN goes to zero (we fit residuals)

Gaussian Process Emulator

Give a set of point (red). How to predict (blue), using no (little) assumptions on the data? (i.e. $f(x)=a x+b)$

$$
y(x)=f(x)+\mathcal{N}\left(0, \sigma^{2}\right)
$$

Definitions

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

$f(x) \in \mathcal{R}$ and $\mathcal{X}=\mathcal{R}^{n}$ [extension to multi-layers exists]
A Gaussian process is a stochastic process with Gaussian distribution

$$
\left(f\left(x_{1}\right), \ldots f\left(x_{n}\right)\right) \approx \mathcal{N}\left(\mu(x), k\left(x, x^{\prime}\right)\right)
$$

We can rescale the data so that $\mu=0$ and we assume

$$
k\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left[\frac{-\left(x-x^{\prime}\right)^{2}}{2 /^{2}}\right]+\sigma_{n}^{2} \delta\left(x, x^{\prime}\right)
$$

I is correlation length. Obtained via Maximum Likelihood Estimator (MLE)

What's the value y^{*} in x^{*} ?

The conditional probability reads

$$
y^{*} \mid \mathbf{y} \approx \mathcal{N}\left(K_{*} K^{-1} \mathbf{y}, K_{* *}-K_{*} K^{-1} K_{*}^{T}\right)
$$

where

$$
\begin{aligned}
K & =\left[\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
\ldots & \ldots & \ldots & \ldots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right] \\
K_{*} & =\left[k\left(x_{*}, x_{1}\right), k\left(x_{*}, x_{2}\right), \ldots, k\left(x_{*}, x_{n}\right)\right] \quad K_{* *}=k\left(x_{*}, x_{*}\right)
\end{aligned}
$$

Application: learning a χ^{2} surface

We aim at estimating the parameters of a model

Simplified Liquid Drop

$$
B / A=a_{v}-a_{s} A^{-1 / 3}
$$

- $\mathrm{N}=\mathrm{Z}$ only (from ${ }^{2} \mathrm{H}$ to ${ }^{100} \mathrm{Sn}$)
- No Coulomb/No pairing
$\rightarrow 2$ D model... easy to make plots!

Least square fitting

$$
\chi^{2}=\sum_{\text {nuclei }}\left(\mathcal{O}^{\text {exp }}-\mathcal{O}^{t h}\right)^{2}
$$

No error assumed (for simplicity) on masses toy model!!!

$$
a_{v}=11.16 \mathrm{MeV} \quad a_{s}=9.60 \mathrm{MeV}
$$

GPE for χ^{2}

Main steps...

- Run GPE to emulate 2D surface of χ^{2}
- Iterative procedure guided by acquisition function
- Use the real simulation for a set of point selected by GPE
- Accumulate GPE iterations around minimum (not known a priori!)
- Refine the minimum using gradient method

Why?

- GPE scans the whole surface (contrary to a gradient
- GPE should detect more minima at once (our expectation)
- GPE should require a lower number of iterations compared to standard minimisation routines
[A. Gration and M. I Wilkinson, (2019). Dynamical modelling of dwarf spheroidal galaxies using Gaussian-process emulation. MNRAS 485(4), 4878-4892.]

Initial point+1 point

Vocabulary

- Posterior mean $\rightarrow \chi^{2}$ surface produced by GPE
- Posterior sd. \rightarrow predicted variance of the surface
- Acquisition function \rightarrow next point required by GPE

+5 points

Vocabulary

- Posterior mean $\rightarrow \chi^{2}$ surface produced by GPE
- Posterior sd. \rightarrow predicted variance of the surface
- Acquisition function \rightarrow next point required by GPE

+10 points

Vocabulary

- Posterior mean $\rightarrow \chi^{2}$ surface produced by GPE
- Posterior sd. \rightarrow predicted variance of the surface
- Acquisition function \rightarrow next point required by GPE

+20 points

Vocabulary

- Posterior mean $\rightarrow \chi^{2}$ surface produced by GPE
- Posterior sd. \rightarrow predicted variance of the surface
- Acquisition function \rightarrow next point required by GPE

GPE vs Exact

GPE

Exact

Conclusions

GPE can be a real advantage to learn a χ^{2} surface \rightarrow pre-optimisation process avoiding getting trapped in local minima (great expectations!)

Conclusions \& Ideas

Several advanced statistical methods on the market

There is no free lunch!

- All methods rely on approximations/hypothesis. Do not use them as black-boxes
- NN/GPE are very powerful \rightarrow need supervision of a physicist!
- There is no intelligence, but a sophisticated fitting (parameter estimate)

York team: shopping list

We aim at learning new methods and apply them to nuclear problems

- (Dream) detector calibration
- (Plausible) apply GPE to fit functionals
- (Realistic) build simple NN/GPE to complete models and improve local extrapolations

Happy to share knowledge/ideas and desperately seeking for manpower (students)

THANK you

Let's do an experiment!

Let's assume we have a population following an exponential distribution

$$
P D F(x)=\lambda e^{-\lambda x}
$$

Let's assume $\lambda=2$

We run the experiment to obtain the data

value	0.068	1.649	0.058	0.165	0.522	0.040	1.078	0.512	0.354	0.449
position	1	2	3	4	5	6	7	8	9	10

Table: Random values extracted from exponential distribution with mean $\frac{1}{\lambda}=\frac{1}{2}$.

To calculate the mean of the parent distribution, I use the estimator

$$
\begin{equation*}
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} X_{i}=0.489 \tag{1}
\end{equation*}
$$

In this case the error on the man is know

$$
\begin{equation*}
\sigma_{M}=\frac{\sigma}{\sqrt{N}}=0.154 \tag{2}
\end{equation*}
$$

Not always so lucky....

Let's use Bootstrap to calculate the errors with no prior knowledge!

Bootstrap in action

(1) Use a Monte Carlo to re-sample your data-set

$$
X=\{0.068,1.649,0.058,0.165,0.522,0.040,1.078,0.512,0.354,0.449\}
$$

$$
\begin{aligned}
& X_{1}^{*}=(0.068,1.649,1.078,0.165,0.522,1.649,0.058,0.512,0.354,0.449) \\
& X_{2}^{*}=(0.449,1.649,0.354,0.165,0.522,1.649,0.058,0.512,0.354,0.068), \\
& X_{3}^{*}=(0.068,1.649,1.078,0.165,0.522,0.068,0.058,0.512,0.354,0.449),
\end{aligned}
$$

(2) Apply the estimator to each of the sets X_{n}^{*}
(3) Make an histogram and admire the empirical distribution of the estimator
(4) Assume the empirical is equal to the real distribution of the estimator
(5) Use 68\% quantile to calculate error bars

Results

Use the empirical PDF!

We extract the mean of the histogram and 68% quantile $\bar{\mu}^{*}=0.489_{-0.14}^{0.159}$ This is called Non-parametric Bootstrap (we made no assumption on the shape of the PDF)

Some warning

Big samples are always better. $N \geq 10-15$.
Re-sampling means to perform combinations.

$$
\begin{equation*}
\binom{2 n-1}{n}=\frac{(2 n-1)!}{n!(n-1)!} \tag{3}
\end{equation*}
$$

Repeated combinations add no info to the problem!

Some values

For $n=5$ we have 126 combinations.
For $n=10$ we have 92378 combinations.
For $\mathrm{n}=15$ we have 77558760 combinations
How many MC you need? At least $10^{3} / 10^{4}$ to avoid adding extra bias! Very simple!

Results

We observe saturation... I should have same size as correlation length of the data.

Errors

Parameter	$[\mathrm{MeV}]$	Error (uncorrelated) $[\mathrm{MeV}]$	Error (correlated) $[\mathrm{MeV}]$
a_{v}	15.69	± 0.025	± 0.14
a_{s}	17.75	± 0.08	± 0.44
a_{c}	0.713	± 0.002	± 0.009
a_{a}	23.16	± 0.06	± 0.35
δ	11.8	± 0.9	± 0.80

Errors are larger (1 order of magnitude) \rightarrow it impacts error propagation on observables. If the model is wrong... it is still wrong, but with better error bars

Is there any effect?

The answer is on the next slide!

[^0]: [L. Neufcourt, Y. Cao, W. Nazarewicz and F. Viens (2018). Bayesian approach to model-based extrapolation of nuclear observables. Physical Review C, 98(3), 034318.]

