Applied Machine Learning for gamma-neutron discrimination: studies

Xavier FABIAN

Univ Lyon, Univ Claude Bernard Lyon 1 CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France

Journée(s) Machine Learning et Physique Nucléaire Orsay, October 2019

Menu

- 1 Experimental context
- 2 Neural networks
- 3 Methodology
- 4 Results
- 6 Conclusions

Experiment 0000

AGATA

- 30 Germanium crystals, 36 segments per crystal
- γ detector array

DIAMANT

- 60 scintillators
- \bullet proton and α filter

Experiment 0000

NEDA

- 54 scintillators (+42 for Neutron Wall, unused here)
- Filters a number of neutrons using:

Experiment

0000

NEDA

- 54 scintillators (+42 for Neutron Wall, unused here)
- Filters a number of neutrons using:

- \Rightarrow *n*- γ discrimination is based on:
 - Signal: n slow component $> \gamma$ slow component
 - TDC: *n* time-of-flight $> \gamma$ time-of-flight

Experiment

0000

NEDA

$$s(t) = A\left[e^{-t/ au_1} - e^{-t/ au_0} + R\left(e^{-t/ au_2} - e^{-t/ au_0}
ight)
ight]$$
 for $t>t_0$

A: signal amplitude

 τ_0, τ_1, τ_2 : decay constants (depends on the scintillator)

R: ratio of excited scintillation processes (different for γ and \emph{n})

t₀: signal alignement

Experiment

0000

NEDA

$$s(t)=A\left[e^{-t/ au_1}-e^{-t/ au_0}+R\left(e^{-t/ au_2}-e^{-t/ au_0}
ight)
ight]$$
 for $t>t_0$

A: signal amplitude

 τ_0, τ_1, τ_2 : decay constants (depends on the scintillator)

R: ratio of excited scintillation processes (different for γ and n)

t₀: signal alignement

Experiment

0000

NEDA

 $\bullet \ \mathsf{Signal} \to \mathsf{SoF} \ \mathsf{and} \ \mathsf{Energy}$

$$S(t) = A\left[e^{-t/ au_1} - e^{-t/ au_0} + R\left(e^{-t/ au_2} - e^{-t/ au_0}
ight)
ight]$$
 for $t>t_0$

A: signal amplitude

 τ_0, τ_1, τ_2 : decay constants (depends on the scintillator)

 $\it R$: ratio of excited scintillation processes (different for γ and $\it n$)

to: signal alignement

Experiment

NEDA

 $\bullet \ \mathsf{Signal} \to \mathsf{SoF} \ \mathsf{and} \ \mathsf{Energy}$

 10^{3}

 10^{2}

Experiment

NEDA

- ullet Signal o SoF and Energy
- Classical charge-comparison algorithm: geometrical cuts
 Our "Truth"

Experiment

NEDA

- $\bullet \ \mathsf{Signal} \to \mathsf{SoF} \ \mathsf{and} \ \mathsf{Energy}$
- Classical charge-comparison algorithm: geometrical cuts
 Our "Truth"
- Mislabel rate? Flexibility?

Previous collaboration work

TMultiLayerPerceptron (ROOT)

Söderström et al. 2019. Neutron detection and γ -ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537. NIM A. Volume 916:238-245. https://doi.org/10.1016/j.nima.2018.11.122

Previous collaboration work

TMultiLayerPerceptron (ROOT)

Söderström et al. 2019. Neutron detection and γ -ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537. NIM A. Volume 916:238-245. https://doi.org/10.1016/j.nima.2018.11.122

 \Rightarrow Interesting results, but online incompatible & what about other NN?

Investigated Neural Networks

- Input layer = 75 neurons
 - First 73 signal samples
 - Energy
 - Time-of-flight
- Three architectures
 - 1. MLP: MultiLayer Perceptron

 The classical reference
 - 2. RNN: Recurrent Neural Network *Ideal for time series*
 - 3. CNN: Convolutionnal Neural Network Image recognition
- Output layer = 1 neuron
 - A value in $[(\gamma)0; 100(n)]$

Output

Output

00000000

 t_0

t₀ RNN resilient!

Truncated signal

MLP can work with part of the signal:

... but signals need to be thoroughly pre-processed

Pileup identification

• Done using simulated signals

Pileup identification

Done using simulated signals

⇒ Works nicely, but signals need to be at least slightly separated

Related study: autoencoder

- Unsupervised learning
- Size of bottleneck? 4 required here.
 ⇒ Linked with signal formula?
- Usages:
 - Noise suppression
 - Data compression

Work of K. Zougagh

Other important considerations

The crucial step(s) of training

Inference time & Online compatibility

Practicability, Usage, Examples, ...

Other important considerations

The crucial step(s) of training

Inference time & Online compatibility

Practicability, Usage, Examples, ...

⇒ G.Baulieu's talk!

Investigated data

- AGATA NEDA DIAMANT 2018 campaign
- Experiment E703: $^{50}Cr \rightarrow ^{58}Ni$
- Runs $142+143 \ (\sim 2 \times 10^9 \text{ events})$:
 - Detectors stability checked
 - Time-aligned, Time gates active
 - DIAMANT: 0 α , 3 protons
 - NEDA: one event (most of the data & avoid combinatorics) Can be either a γ or a n, goal = test filter quality

- AGATA NEDA DIAMANT 2018 campaign
- Experiment E703: 50 Cr \rightarrow 58 Ni
- Runs $142+143 \ (\sim 2 \times 10^9 \text{ events})$:
 - Detectors stability checked
 - Time-aligned, Time gates active
 - DIAMANT: 0 α , 3 protons
 - NEDA: one event (most of the data & avoid combinatorics) Can be either a γ or a n, goal = test filter quality

 \Rightarrow Compare ¹⁰⁴In and ¹⁰⁵In AGATA γ spectra to compute NEDA's neural networks $n-\gamma$ discrimination quality

¹⁰⁴In vs ¹⁰⁵In

Geometrical cuts

Methodology 00

¹⁰⁴ln vs ¹⁰⁵ln

Geometrical cuts

Methodology ○●

¹⁰⁴In vs ¹⁰⁵In

Geometrical cuts

Methodology 00

γ selection with NN

γ selection with NN

γ selection with NN

Quality vs Stats tradeoff

Wrapping-up

- Three Neural Networks (MLP, RNN, CNN) implemented
- Discriminating information from NEDA:
 - Sampled signal
 - Time-of-Flight
- Trained using truth label from classical CC algorithm (cuts)
- Multiple features were tested:
 - RNN is not sensitive to misaligned t₀
 - MLP only requires a part of the signal
 - Proper pileup identification
 - Autoencoder: 4 neurons required
- Mislabel probability vs stats of NEDA computed using AGATA
 - ⇒ Convergence towards training algo, user has flexibility
- Further results in Guillaume's talk!

Perspectives

- NN extrapolation skills
 ⇒ Study of γ spectra associa
 - \Rightarrow Study of γ spectra associated to NEDA's "No Man's Land"
- Towards a variationnal autoencoder
- Future objective: apply developed skills to a more ambitious task
 - ⇒ AGATA signals

The End

Lyon IP2I task force:

- Guillaume Baulieu
- Laurent Ducroux
- Jérémie Dudouet
- Xavier Fabian
- Olivier Stézowski

Many thanks to all the people involved in the AGATA, NEDA and DIAMANT collaborations!

Questions?