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1) Introduction to Machine Learning
2) Classification
3) Neural Networks

4) Popular NN algorithms

Julien Donini 2



References (non exhaustive !) & credits

Classical Machine Learning textbooks

* Elements of statistical learning (ESL), Hastie et al., Springer

* An Introduction to Statistical Learning (ISLR), Hastie et al. Springer
> Both books available online: http://web.stanford.edu/~hastie/pub.htm

* Pattern Recognition and Machine Learning, Bishop, Springer

* Deep learning book, |I. Goodfellow et al, http://www.deeplearningbook.org/

A *lot* of courses, lectures and tutorial on the web
* Online courses: DataCamp, Coursera, Andrew Ng (http://cs229.stanford.edu/)
* CERN lectures (ex: Kagan https://indico.cern.ch/event/619370)
* 2 recommended lectures:

* Francois Fleuret (EPFL)https://fleuret.org/ee559/

* Gilles Louppe (University Liege)https://github.com/glouppe/info8010-deep-learning
* ML cheatsheet: https://ml-cheatsheet.readthedocs.io/en/latest/index.html
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What is Machine Learning

Based on mathematics, statistics and algorithmics + computer power
* Determine complex models from data
* Prediction and inference

Machine Learning is not recent

* Artificial Neural Network (theory 40’s, first functional networks 60’s)
* Decision Trees (~80’s)

* Used in HEP since many years — but sometime with scepticism.

Renaissance of the field since ~10 years

* Deep Learning (first DNN in HEP arxiv:2014.4735)

* Graphics Processing Units for fast and scalable calculations

* New recent algorithms: GAN (2014), Adam minimization (2014), ...
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What is Machine Learning

Data

Output \
y(X)

X: Input data of (multidimensional) variables
y(X): output (multidimensional) values

where y is determined by “machine”
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What is Machine Learning

Julien Donini

Data

Output \ / '/ weights
y(x,\w) =t_

Target

Training phase
Input data generally consist of a set of:
« X.: known input features (or variables)

« t: known target values (or label)

— Learn y(x) to reproduce t: determine weights w

Testing
determine y (therefore t) for a any new set of x values



Type of learning

Supervised learning

* Given: training data and labels (i.e type of data)
* Training and testing phases, generalization

— Regression, classification ...

Unsupervised learning
* Given: training data and no label
— Clustering, dimensionality reduction, ...

Semi-supervised learning
* A mix of the above, ex: training data + few labels

Variants
* Reinforcement learning (learn by trial and errors)
* Active learning (use partial labels)
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Regression

Given training data {x,t}, learn a function y(x) to predict t given X.

Output y consists of one (or more) continuous variables - Regression

* EX: linear regression: data is fit with a linear function of weights

M w.: weights (coefficients)
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Classification

Given training data {x,t}, learn a function y(x) to predict t given X.

Output y consists of one (or more) categories — Classification

Example (2D):
Data coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by a function.

X

y(x,X,) > 0.5 - ORANGE
y(x,,X,) <0.5 -BLUE
Boundary: y(x,,x,) = 0.5

Orange shaded region: space classified as ORANGE
Blue region: space classified as BLUE.
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Clustering

Given data {x,y } without label, determine groups of similar types.

— Clustering

0.5¢ 0.5}

L
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Classification

@

1. LDA: brute force classification
2. Perceptron: Machine Learning 101

3. Logistic regression: one neuron network
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e Variable/feature: x, weight: w

e Vector: variables x =

e Vector (transpose): x!

e Dot product : w-x=w x=

L1

Ln

= (

T

: weights w =

4 P 73371)

e Sequence of p vectors: {X;}j=1.p

o Matrix (size n x m): M
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Linear Discriminant Analysis

Consider set of observations x with known class (or target) t — training data
x € RP
t € {0,1}

Classification: find a good predictor for the class for any new observation x

Assume that events in both classes (t=0 and t=1) are normally distributed
— mean and variances: (po, X0) and (4, %1) respectively.
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Linear Discriminant Analysis

Probability for an observation x for a given class {0 or 1} is:

1 1 Ts—1 _
Pt =) = e (5005 ) ) = (0.1)

Obijective is to calculate analytically P(t = y|x) using training dataset

This Classifier is called Quadratic Discriminant Analysis (QDA)
If same covariance matrices (X, = X = %): Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis

| - Louppe / Fleuret
Let's consider P(x|t=1), using Bayes rule we have: [Louppe / Fleuret]

Pt =1lx) =

— P(x|t=0)P(t=0) '
L+ =0 pe=D

1

And, using the sigmoid function: o(z) = 1+ oxp(—2)

sigmoid{x)

we get:
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Linear Discriminant Analysis

Therefore: [Louppe / Fleuret]
P(t = 1|x)
Pxt=1) . P(t=1)
T8 Pxt=0) " ®PE=0)
= o (log P(x|t =1) —log P(x|t =0) + a)
1 . 1 )
= (g )T e ) G ) TS )
_ 1 _ _
=0 [ (=) ST x+ S X o — i X ) +a
v;'rl—’ \ - J/
b
=0 (WTX + b)

In practice all parameters (y,, 4., Z, 3, b) are calculated from training data.
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Data with
fixed covariance

Data with
varying covariances
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Linear Discriminant Analysis

Linear Discriminant Analysis Quadratic Discriminant Analysis

https://scikit-learn.org/stable/modules/lda_qgda.html
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Perceptron algorithm




Perceptron algorithm

One of the oldest ML classification algorithm (Rosenblatt 1958)
Goal is to find a separating hyperplane between two classes

Online algorithm: process one observation at a time.

sign(x
N observations: X gn() :[,1

t = +1 Class C1
t = —1 Class C2 @ >

&
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Target values t : {

T

Model: y(x) = sign(w” x)




Perceptron algorithm

Determine optimal weight with iterative procedure:

Initialize all weights (to 0)

For each training example (x,, t):
e Calculate y(xi) = sign(w?’
° If t; # y(xi)
- Update weights wh = whth = w4 n(tix;)
l.e mistake on positive:  +X;
mistake on negative: —X;
nN: learning rate (number <1)
* Repeat until all examples are correctly classified

Xi)

Perceptron convergence theorem: if the data is linearly separable
then the perceptron algorith is guaranteed to find an optimal solution.

Julien Donini
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Perceptron algorithm at work

Convergence of the
perceptron learning
algorithm.
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Logistic regression

sigmoid(x)




Logistic regression

Despite its name the logistic regression is a classification algorithm.
It uses the sigmoid function to return a probability value between 0 and 1.

Consider a classification problem with two classes C, and C..

The probability of an event being in class C, given data x Is:

p(Cilx) = f(x) = o(wo + >_; wiw;)

The class decision rule is then: .

0.8

p > 0.5 = Class C4

sigmoid(x)

p < 0.5 — Class Cs

0.4 4

0.2 4

0.0
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Logistic regression

To make a predictive model we need:
* Training dataset : data features x and target values t = {0 or 1}
 Data weights w (w. and bias term w,)

* Determine w by minimizing a cost function E(w) (a.k.a Error function)

For this we use the Cross-Entropy cost function:

N
E(w)=— thln(f(xj)) + (1 —¢;)In(1 — f(x5)) — Bernoulli random variable
J=1 (see backup slides)

D
where f(x)=o <’wo + Z wﬂz‘)
i=1
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Logistic regression

Weights are determined from the derivatives (gradient) of E(w)

For this we can show that:

Which is used to demonstrate:

do(x)
dx

VE(wW) =) _[f(x;) = t;]x

j=1

where x; = (1,21,...,zp)"

= o(z)(1—o(x))

However there is no analytical solution to: ﬁE(w) = 0.
— The error function is minimized by repeated gradient steps:

Gradient Descent

Julien Donini
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Gradient descent




Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of E(w) iteratively:

E(w)

Julien Donini

wh = whtl = wh — nﬁE(wk)

K: iteration, n: learning speed
Repeat until convergence.

convergence

0.5 4

0.4 4

Cost

0.3 |

0.2 |

5000

—— Cost function

10000

N iterations

15000

20000 25000
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Stochastic gradient descent

Gradient descent can be computationally costly for large N since the
gradient is calculated over full training set.

— Solution: Stochastic gradient descent

Compute gradient on a small batch of events (can be 1 event):

( OE(w) /

owo Zj:lCN [f(Xj) - tj]
6E(W) = %E—QEZV) — ijlcN [f(Xj> - tj] Tj1

OE (w
\ au()_p) = i—1cn Lf(x5) —tilzp

Stochastic behaviour can also allow avoiding local minima.
Method is widely used in neural networks
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Towards Neural Networks




The basic unit of a neural network is the neuron: an activation function f
that receives as input weighted data and produces a single output value.

(The idea was originally motivated by biology but is still far from reality.)

Data
features
Neuron
X1 W1
X, W, —»  Output

; D
%o weights I y(x,w) = f <Z1 WiT; + b)

b = f(w'x+Db)

f is an activation function
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Activation function

Threshold Logic Unit
First mathematical model for a neuron (McCulloch and Pitts, 1943).
Assumes Boolean inputs and outputs.

1 1if 27wz +b >0
D 0 else
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Activation function

Perceptron
Similar except that inputs are real (Rosenblatt, 1958).

1 1if 27wz +b> 0

X = —» f(x) =

D 0 else

10 A

0.8 A

0.6 -

f(x)

04 4

0.2 A

00 A
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Activation function

Sigmoid function
Weighted data features are passed to sigmoid function o(x)

X1 D
X = — > f(X)ZO‘(ZwaZ—Fb)
zh i=1
.
"
%uﬁ' 1
E”“" o(@) = l1+e*
.
.

&
=
]
=
]
s
o
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Activation function

<
—

—— sigmoid
—— tanh
—— RelU ':
(Ig] :
o —| — leaky RelLU 5_
T o
o o |
0
o :
! :
o
o | | | | |




Intermediate layer with 2 neurons

3

A . }*
X, b —»  Output
: W, ‘

/ y(x, w) =

Fwlf(wi'x+b1) +wy f(wa' x+bg) + bs)




Intermediate layer with K neurons

)= f (WlTX—I— b1)

Xl
X, ‘ —»  Output
X_ y(x, w) S wiah + b'>

o = f (WKTX + bi)

(bias terms not shown in the figure)




Generalization

The output of one layer composed of K neurons is:

x ——» xU = f(Wx+Db)

I w11 MK bl
rp Wp1 WpDK b
x € RP W e RP*E b e RE

This step can be generalized to L layers of K _neurons each:

x = xW = (W<1>X+b<1>) e

e x™ (W<L>X<L—1> I b<L>)

X: input data
Julien Donini

» NN output: y(x,w) = x®
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Multilayer perceptron

Architecture can be generalized to any number of layers and outputs

— Multilayer perceptron, also known as fully connected feedforward network
(Input to the layers from preceding nodes only).

Input layer Hidden layers Output layer

& ™
- - -
- - -
- - -

Weights are obtained by minimizing an error function E(w) using
(stochatic) gradient descent.
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Classification & regression

NN can be used both for classification and regression

Classification
* 2-classes: output layer = 1 neuron with, e.g., sigmoid activation function
— probability y, (x) to be in 1 class

* Multi-classes (C classes): output layer = C neurons
— probability to be in each class {y,(x), ..., y.(X)}

e~

25:1 e

For this Softmax activation function can be used: Softmax(z;) =
Regression

* No activation function in output layer — Real unbounded y(x) values
(Could have more than 1 output neuron)
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Cost & loss functions

The NN aims at minimizing a cost function over training events
* Generally a loss function of output and target values

Cost function NN output for
(a.k.a Error function event x; and
or Empirical risk or weights w

Target value

... loss function) :
\ . / / for event i

E(w) = N ;E(Y(Xiaw)ati)
Training events / \

(all events, or Loss function
batch of events)

Examples:
E(w) =+ 3N (y(xi, w) — t;)? Mean square error
E(w)=— vazl t;In(y(xi, w)) + (1 — t;)In(1 — y(x;3,w)) Cross entropy
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Training a NN in 3 steps

1) Forward pass
Compute values at each neuron. Ex for L layers:

x > x1) > e xW = (W(j)x(.i—l) +b<j>> e x@ —y(x)

Input — —— — NN output

data

Values for hidden layers

s0) — Wix(-1) 4 pi)

For each layer j we define: {X(j) _ (s(j))

where f: activation function and x(©) = x
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Training a NN in 3 steps

1) Forward pass
Compute values at each neuron. Ex for L layers:

x > x1) > e xW = (W(j)x(.i—l) +b<j>> e x@ —y(x)

Input — —— — NN output

data

Values for hidden layers

2) Backward pass: backpropagation
Compute the cost function E(W) and its gradient
— calculate the gradient of the loss function for all NN weights (and bias)

VEW) Ol )4

WG apa’ W=l
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Training a NN in 3 steps

Example: MLP network with 2 layers (1 hidden, 1 output)

Input data _
X A Use chain rule to compute
! derivatives of the loss /(y,t)
L
s = Wx 4 b | &
. ! s o ol ol dy 0Os?
3 x(D = f(sM) % 3 OW®) — gy 95 oW (@)
2 o | g oy 83(2)
S | 52 =w®@x(1) 4 b2 % o
= (7
@ s |3 o ot oy 095 ax) 9
® oW — dy 8s@ o9x(M 9s(1) oW (1)
v A Of(s®) 95@ of(sV)
\ y(x) = x? T Oy 0s®@ ox() gs@)

NN output
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Training a NN in 3 steps

3) Gradient step
Update all NN weights and bias terms

. . of
) G) _
wl 5w n Z D
N
. . o/
) G) _
by b n ZN: NG

Summation is performed on all N training events or batch of events.
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Concrete example

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

~ {01 0.2 , (05
y W= (0.3 0.4) W= ( 0.6 )

(05 ,

Forward propagation:

(02 1 _ [ 058 @) .y [ 0.64
Input x_(0.3>—>s —Wx—|—b—(0.68)—>x =o(s'V) = 0.66

—s® =W'xM 4+ b =1.22 = 0(s®) =y = 0.77/ = NN output value

Mean square error loss: E = {(y,t) = (y — t)*
* Here let's assume that for this event target value is t=0 - ¢(y,t) = 0.60
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Concrete example

Simple NN architecture (1 hidden layer, 1 output):

Initial weights
(0.1 0.2 , (05
y W= (0.3 0.4) W= ( 0.6 )
(0.5 )

Backward propagation:

14 ol dy 0s@ 14 ot dy 0s@ gx gs1)
OW’ Oy 0s(2) oW’ OW ~ 0y 9s@ ax® 9s1) oW
ot o o 1
_ OGS _ SO0 (50
(034 (002 0.03
—\ 0.35 ~\0.02 0.04

Note that: ¢/(z) = o(z)o(1 — x)
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Concrete example

Simple NN architecture (1 hidden layer, 1 output):

Initial weights

0.10 0.20\ ,, { 0.50
y W= (0.30 0.40) W= ( 0.60 )
? b= ( 8:28 ) b = 0.50
b
-
Backward propagation: Updated weights
— = 5 (s?) =0.53 0.08 017\ «,, ([ 0.16
b’ dy () W= <O.28 0.36) W= ( 0.25 )
o ol 1 0.40
3 = aya’(s@))Wi’a’(sg ) b = ( 038 ) b = —0.03
_{ 0.10
~\ 0.12 -~ New output value y = 0.55,

closer to t=0 target value
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Universal approximation theorem

Theorem (Cybenko 1989, Hornik et al. 1991) states that a feed-forward
network with a single hidden layer containing a finite number of neurons
can approximate any continuous functions in R" space.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Qur
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness,

Cybenko (1989):http://link.springer.com/article/10.1007%2FBF02551274
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Universal approximation theorem

lllustration: let’s try to approximate a (1D) function with a 1-layer LMP

1 neuron: f(z) = wiReLU(x + by)

[Figures: Louppe]
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Universal approximation theorem

lllustration: let’s try to approximate a (1D) function with a 1-layer LMP

2 neurons: f(x) = wiReLU(z + b1) + waReLU(x + b3)

[Figures: Louppe]
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Universal approximation theorem

lllustration: let’s try to approximate a (1D) function with a 1-layer LMP

3
3 neurons: f(x) = ZwiReLU(iv + b;)

1=1

[Figures: Louppe]
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Universal approximation theorem

lllustration: let’s try to approximate a (1D) function with a 1-layer LMP

—»< i1
———
—_— f=f-1+ M

6
6 neurons: f(x) = ZwiReLU(aﬁ + b;)

1=1

[Figures: Louppe]
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Universal approximation theorem

lllustration: let’s try to approximate a (1D) function with a 1-layer LMP

13
13 neurons: f(z) = ZwiReLU(aﬁ + b;)
1=1

[Figures: Louppe]
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Universal approximation theorem

Even a single hidden-layer network can represent any classification
problem if the decision surface is locally linear (smooth).

Hidden

Any function can be approximated (up to any precision) but the hidden layer
may be infeasibly large and may fail to learn and generalize correctly, as
representing is not the same as learning.

Deeper models can reduce the number of units required to represent the
desired function and can reduce the amount of generalization error.
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Going deep

Adding layers can help uncovering specific data patterns [Montufar, 1402.1869]:

The absolute value activation function g(x,,x,) - [x,[,|x,| folds a 2D space twice.

Each hidden layer of a deep neural network can be associated to a folding operator.
The folding can identify symmetries in the boundaries that the NN can represent.

“We can interpret the use of a deep architecture as expressing a belief
that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output.”

“This suggests that using deep architectures does indeed express a

useful prior over the space of functions the model learns.
[goodfellow et al. http://www.deeplearningbook.org]
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Neural Networks today

A mostly complete chart of
Q Backfed Input Cell N e u ra l N e tW 0 r k S Deep Feed Forward (DFF) Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (REM) Deep Belief Network (DBN)
o Input Cell 2076 Fjodor van Veen - asimovinstitute.org - ’ ) . N 0

é Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Netwark (RBF)

@ Hidden Cel - N -
© Pprobablistic Hidden Cell - B -

. Spiking Hidden Cell

Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM)  Cated REcumentiny (GRU) Deep Convolutional Netwark (DCN) Deconvolutional Network (DN)  Deep Convolutional Inverse Graphics Network (DCIGN)

@ output celt 8 - o 2 o = 2 & -

. AR, RN XX o " < 5. -—
© watch Input Output Cell A J0X00 I A T W W N & = 8 T o <
. Recurrent Cell : : - A e = _\O/—\ - A el = = S

= = » 7_><‘_\__ o O .7.><‘.\-
@ wemorycet Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE(SAE) | — < N o : ) :: - <
. Different Memory Cell o B A —->§- . Q-\_ > .7.>7<. L

" Kernel
Generative Adversarial Netwaork (GAN) Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Network (ESN)

G

O Convolution or Pool

N NN N
R
D AT AT A ATIATEL

AVAVAWAW Wy

Neuromorphic computing

Deep Residual Network (DRN) Kohonen Network (KN}  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
Input plane . = 7
:h\ Primary o — - _—
Ny Layer of neuron - ) o -
] neurons r - .
Wy - - =
110 :
-
+H
b=
"-’J/ Towards Level-tuned Level-tuned . . . .
pez next layers newon #1 ey gneuron 52 http://www.asimovinstitute.org/neural-network-zoo/
5% 3
/]
Intra-layer
M_’l communication between
L neurens
Synaptic
interconnections |
B Bl TSP



http://www.asimovinstitute.org/neural-network-zoo/

Popular NN algorithms

Autoencoders

Generative Adversarial Networks

Convolution networks

Recurrent NN & LSTM

Julien Donini

For a short review see e.g. here
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https://medium.com/cracking-the-data-science-interview/a-gentle-introduction-to-neural-networks-for-machine-learning-d5f3f8987786

Autoencoders

Input image Reconstructed image

™. Latent Space Y
'~ Representation P

NN designed for unsupervised learning (i.e no labels) for anomaly detection

In general acts as data-compression model
* Encode a given input into a representation of smaller dimension.
* Decoder used to reconstruct the input back from the encoded version.

Typical loss function: { = ||Xinput — Xoutput ||
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Denoising Autoencoders (DAE)

Autoencoder that receives a corrupted data point as input and is trained
to predict the original, uncorrupted data point as its output.

Back Propagation

DAE trained to map corrupted data points X
back to original data points x (red crosses).
0= [lg(f(R)) — x||? The AE learns the vector field (g(f(x)-x).

Encoding Decoding

[image R. Khandelwal] [goodfellow et al. http://www.deeplearningbook.org]
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http://www.deeplearningbook.org/

Variational Autoencoders (VAE)

VAE [Kingma et al., 1312.6114] are probabilistic networks that are part of deep
generative models.

mean vector

sampled
latent vector
~” N
Encoder —) Decoder
Network Network
~N e
(conv) (deconv)

standard deviation
vector

Loss = Kullback-Leibler divergence (how much learned distribution deviate from
unit Gaussian)

+ Reconstruction loss (how well input and output agree)
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https://arxiv.org/abs/1312.6114

Variational Autoencoders (VAE)

(Unput Pixels ) X

4

784 to 400 > RelU 400 to 20 >( 20-dim Gaussiﬁ“) |.|, (o)

Encoder

4
draw sam[:lles[fI Z

, Decoder
20 to 400 “1 RelU 1 400to 784 sigmoid
Output{Pixels y
@ 1 - i 7 1,
£(0,¢ixD) = 237 (1+1og((0)?) = (1) = (o17)?) + Zlogp (2
j=1

where z() = p 4 6@ el and € ~ N(0,1)

For more information on VAE see these nice blogs: here, here and here.
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https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://anotherdatum.com/vae.html
http://kvfrans.com/variational-autoencoders-explained/

Generative Adversarial Network

arXiv:1406.2661 (lan Goodfellow et. al)

Real

Samples X: data (image, real or fake)
% D(x): probability that x came
Lot ] from training data rather than
e generator G
L :‘N‘*—' www  z:latent space vector (e.g.
" : standard normal distribution).
= __'@_' Generated . i
= Senerstor ] Fake G(z): generator function, maps z
— i to data-space
- = | FineTuneTraining

D(G(z)): probability that the output of the generator G is a real image.
D tries to maximize the probability it correctly classifies reals and fakes (logD(x)),
G tries to minimize probability that D will predict outputs are fake (log(1-D(G(x)))).

GAN loss function:

max V(D,G) = Egp,.. () l0g D(@)] + E.p_ (2)[log(1l — D(G(2)))]

min
T D

G
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Convolutional NN

Deep neural networks used primarily to classify images, cluster them by
similarity, perform object recognition within scenes, ...
Original paper Yan Lecun et al., 1998: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

C3: f. maps 16@10x10
INPUT C1. feature maps S4: f. maps 16@5x5

B6@28x28
32x32 @ S2: f. maps

C5: layer F6: la OUTPUT
layer
120 84 10

| FulIcoanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-3, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Input image scanned in sequence of steps

— Convolution: filtering image using weight matrices

- Subsampling: reduce filtered image (feature maps) to lower dimensional space
— Final features are passed as a vector to MLP for classification

For more information see also beginner's guide to CNN
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https://skymind.ai/wiki/convolutional-network
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Convolution and maxpooling

Convolution

Local image decomposed in RGB features,
each being passed through 2 sets of filters

Julien Donini

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Qutput Volume (3x3x2)
X[z,2,0]) wi[:,:,0 wlfz,:,0] o[:,:,0]
SR I 1 L 1 [ 109 7
T 23 (00 Bl R N E 0 0 -1 14 14@
0 21 22l Jo 111 0 0 1 5 14 12
020 0[TRZ10 wO[ir?i1) wifz,:,1] ol:,:,1]

R muor b 7 7 [ 10 -1 3 Sl
o1 02 20 0 Jiq! ohy Ll &1 8 3 2
000000 O Y HE 1 [0 S50 4
ey 0(2,2,2) wi[t,1,2]

0000 O 1 joq! 1 | N - i
—relte 5 =y (W T e S 2 activation maps
TR 5 SAWE il [

G B2 0 : i; Bigh b0 (Jx1x1) Bias bl (1x1x1)

a8 |2 2 2 0 0,,& 1,4,0] blfz,:,0]

001 0 2 ! 0

00 0 0 0/0

xX[3,3,2]

000 0 0/0

1L A An 2 sets of kernels/filters, which va

TR 0 : ry per
B T =1 channel.

B 00 29 i o0 Jo _ _

558 78 i 2 A 2 << The input image's 3 color channels

00 lo oo oo

Maxpooling / Downsampling

Takes the largest value from one

patch of an image

Single depth slice

ST 2 | 4
max pool with 2x2 filters
SelGN 7 | 8 and stride 2 6|8
3 | 2 [ 3|4
112|3 |4
y

For cool animation see here
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https://cs231n.github.io/convolutional-networks/

Recurrent neural network (RNN)

CFT\D ® ® ® W,
A

- A S

S S e S

Il

Applications: speech

recognition, language
modeling, translation,
image captioning...

Long Short Term Memory networks (LSTM)

LSTM are capable of remembering information for long periods of time.

A

& o, ®
| |

Vi B R & i

ps
——® T
® ®
A | bedsTl| A
\J )_' 4 ’\ )
© ® ©
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Julien Donini

LSTM contains four
interacting layers in
each cell that enable
to forget or update
information at each
iteration


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ML software, tools and interfaces

Internal (HEP) tools

ROOT framework for data storage and processing
Multivariate Analysis: TMVA for mostly BDT and (deep) NN
Specific for Neural Networks: NeuroBayes

External tools

Data format: text, csv, images, HDF5, ...
ML libraries: Keras+TensorFlow, Pytorch, scikit-learn (no DL), ...
All kinds of popular algorithms: CNN, GAN, RNN, LSTM, AE, VAE ...

Interfaces and middleware
PyMVA: Interface TMVA and Keras
Several middleware file format conversion solutions:

arxiv:1807.02876

PyROOT

Python extension module that allows the user to interact with ROOT data/classes. |69

root_numpy

The interface between ROOT and NumPy supported by the Scikit-HEP community. m]

root_pandas

The interface between ROOT and Pandas dataframes supported by the DIANA /HEP project. |TIJI

uproot

A high thronghput 170 interface between ROOT and NumPy. FT|

c2numpy

Pure C-based code to convert ROOT data into Numpy arrays
which can be used in C/C44+ frameworks. |E|

rootdj

The hepio.root package contains a simple Java interface for reading ROOT files.
This tool has been developed based on frechep-rootio, l?ﬂl

root2Znpy

The go-hep package contains a reading ROOT files.
This tool has been developed based on frecheperootio. lﬁl

root2hdfh

Converts ROOT files containing TTrees into HDFS files containing HDFS tables. FI'

Julien Donini
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https://root.cern.ch/tmva
https://twiki.cern.ch/twiki/bin/view/Main/NeuroBayes
https://www.hdfgroup.org/solutions/hdf5/
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/
https://arxiv.org/abs/1807.02876

Notebooks

Jupyter notebooks: jupyter.org

Install  AboutUs Community Documentation

~ Jupyter

o0 Install using Anaconda:
jupyter www.anaconda.com

) Easily install 1,400+ data science packages for Python/R and manage your packages, dependencies, and
environments—all with the single click of a button. Free and open source.

Project Jupyter exists io develop op software, op tlandards, and services for inis ; sh) ANACONDA DISTRIBUT'ON

Most Trusted Distribution for Data Science

ANACONDA NAVIGATOR

.
= JUPYTEr  Lorenz Differuntial Equations s e Desktop Portal to Data Science
Fe Em e e Gw e e s
. B sl aRe s > uc o 1 o oo, e . The Jup
= Exploring the Lorenz System
= Jupyter wm-t: The Jupyter
o Em vew
| imoly-x code, equali
£esans e o e mo ANACONDA PROJECT
1 Fien
1 Tha Portable Data Science Encapsulation
= Jupyter ) — il

DATA SCIENCE LIBRARIES

Data Science IDEs Analytics & Scientific Computing Visualization Machine Learning

2% el (8N [=e®

|| Numba | | Bokeh ||

pandas| ) ‘-—» Smatplatc ‘H,O ‘theano‘

-.and marry more!

CONDA

Data Science Package & Environment Manager

Why Over 6 Million Users Love Anaconda Distribution




Scikit-learn (scikit-learn.org)

.ﬂl Home Installation Documentation ~ Examples

Classification

Identifying to which category an object
belongs to.
Applications: Spam detection, Image

recognition.
Algorithms: SVM, nearest neighbors,
random forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.
Applications: Visualization, Increased

efficiency
Algorithms: PCA, feature selection, non-
negative matrix factorization. — Examples

News

On-going development: What's new
(Changelog)

scikit

[iéf.;o-;l e Custom Search

) e D

-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso,
— Examples

Model selection

Comparing, validating and choosing
parameters and models.

Goal: Improved accuracy via parameter
tuning

Modules: grid search, cross validation,
metrics. — Examples

Community
About us See authors and contributing
More Machine Learning Find related projects

Clustering

Automatic grouping of similar objects into
sets.

Applications: Customer segmentation,
Grouping experiment outcomes

Algorithms: k-Means, specfral clustering,
mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.
— Examples

Who uses scikit-learn?



Deep Learning libraries

www.tensorflow.org
Keras.io

Keras: The Python Deep Learning library

. Keras

Te nsor You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK,
Pyto rc h . o rg or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result

PYTO rch Get Started Features

extensibility).

binations of the two.

FROM
RESEARCH TO

PR@EEETON

An open source deep learning platform that provides a seamless path from

research prototyping to production deployment.
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ML and HEP

Based on classification in Machine Learning in High Energy Physics
Community White Paper, https://arxiv.org/abs/1807.02876

1.Detectors & accelerators

2.Simulation

3.0bject Reconstruction, Identification, and Calibration
4.Real Time Analysis and Triggering
5.Uncertainty Assignment

6.Learning the Standard Model - searches for anomalies

7.Matrix Element Method with ML

8. Theory Applications

9. Computing Resource Optimization
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ML and HEP

Data analysis 8 1 aTLAS.
o % 10° i_\"s=8TeV, 203 fb" é?ﬁ;ﬁvsm}xs;
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ML and HEP: recent bibliography

Reviews/guides

Machine Learning in High Energy Physics Community White Paper, https://arxiv.org/abs/1807.02876
Deep Learning and its Application to LHC Physics, https://arxiv.org/labs/1806.11484

Supervised deep learning in high energy phenomenology: a mini review, https://arxiv.org/abs/1905.06047
A guide for deploying Deep Learning in LHC searches: https://arxiv.org/abs/1909.03081

Machine learning and the physical sciences, https://arxiv.org/abs/1903.10563

Recent work

How to GAN LHC Events, https://arxiv.org/abs/1907.03764

Machine Learning Templates for QCD Factorization in the BSM Search , https://arxiv.org/abs/1903.02556

A GAN Approach for the Simulation of QCD Dijet Events at the LHC, https://arxiv.org/abs/1903.02433

Effective LHC measurements with matrix elements and machine learning, https://arxiv.org/abs/1906.01578
Variational Autoencoders for New Physics Mining at the Large Hadron Collider, https://arxiv.org/abs/1811.10276
A robust anomaly finder based on autoencoder, https://arxiv.org/abs/1903.02032

Novelty Detection Meets Collider Physics, https://arxiv.org/abs/1807.10261

Extending the Bump Hunt with Machine Learning, https://arxiv.org/abs/1902.02634

Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics, https://arxiv.org/abs/1909.10389
The Metric Space of Collider Events, https://arxiv.org/abs/1902.02346
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Backup material




ML in practice

Python resources

* A Crash Course in Python for Scientists :
http://nbviewer.jupyter.org/gist/rpmuller/5920182

* Introduction to scientific computing with Python:
http://github.com/jrjohansson/scientific-python-lectures

* Python Tutorial: https://www.codecademy.com/tracks/python

Notebooks basics

* Installation (recommended): https://www.anaconda.com/download

* Jupyter Notebook documentation: https://jupyter-notebook.readthedocs.io/en/stable/
* Interactive notebooks: hitps://mybinder.org/

* Introduction with video tutorial: https://www.youtube.com/watch?v=Duicsycntdo

Git
* Git documentation: https://book.git-scm.com/
e Github: https://github.com/
* GitLab (CERN) basics: https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
* Tutorial (in FR): https://github.com/clr-info/tuto-git
https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git
Julien Donini 75


http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://github.com/jrjohansson/scientific-python-lectures
https://www.codecademy.com/tracks/python
https://www.anaconda.com/download
https://jupyter-notebook.readthedocs.io/en/stable/
https://mybinder.org/
https://www.youtube.com/watch?v=Duicsycntdo
https://book.git-scm.com/
https://github.com/
https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
https://github.com/clr-info/tuto-git
https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git

Logistic regression for classification

. . . . [slide from kagan]
* Linear discriminant: h(x; w) = w'x

1

B ] + e wWhx

* Model per example probability: p(y = 1|x) = p;
— The farther from boundary w'x=0, the more certain about class

— Class decision rule: choose class 0 1t p;<0.5, else choose class 1

08|
.| Logistic Sigmoid //

aaaaaaaaaaaaa

* Concisely write p(y|x) as Bernoulli random variable:

P(y; = y|z;) = Bernoulli(p;) = (pi)¥* (1 — p;)' ¥ ={11)i.pi 1lf1; i::.
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Logistic regression

[slide from kagan]

* Negative log-likelihood

_ NYi (1 _ V1 Vi
- 111 [.: — ln H (pi) (1 p'b) binary cross entropy loss function!

e

=Y yiln(l+e™ )+ (1 —y,) In(1 +e¥ )

— Zy In(p;) + (1 — ;) In(1 — p;)

b
* No closed form solution to w* = arg min,, -In L




Vanishing Gradient

[Slide from G. Louppe]

Training deep MLPs with many layers has for long (pre-2011) been very difficult due
to the vanishing gradient problem.

» Small gradients slow down, and eventually block, stochastic gradient descent.

s Thisresultsin alimited capacity of learning.

100 ; |
— Layer 1
~ Layer?2
: | | | | —Layer 3
soF o ...................... .................... _[ﬂyer4 o]
| | | Layer 5
-0.2 -0.135 -0.1 -0.05 0 0.0 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.



Vanishing Gradient

[Slide from G. Louppe]
Consider a simplified 3-layer MLP, with z, w1, ws, w3 € R, suchthat

f(z; wy, ws,w3) = 0 (w3o (weo (wriz))).

Under the hood, this would be evaluated as

'lLl = 'lﬂliB
us = o(uy)
U3 — wau2
Uy = U(Uz)
Ur — W3Uy
Yy = U(Us)
and its derivative dg as
d‘?.U]_

dg 07 Ous Ouyg Oug Ouy uy
dwl n aU5 8u4 8u3 3’&2 3’&1 Bwl
_ Oo(us) 0Oo(uz) Oo(ug)
B 6%5 s a‘ltg 2 8’&1 v




Vanishing Gradient

[Slide from G. Louppe]

The derivative of the sigmoid activation function o is:

0.25 -
0.20 -
0.15 ——
010 -

0.05 ——

0.00 -

i ] ] ] I I | ] I
-100 -75 -50 -25 0.0 25 50 75 10.0

do
) = o(2)(1 - o ())

Notice that 0 < 92(z) < 1 forallz.



Vanishing Gradient

[Slide from G. Louppe]

Assume that weights w1, wa, w3 are initialized randomly from a Gaussian with
zero-mean and small variance, such that with high probability —1 < w; < 1.

Then,

dg 3J(u5) aa(ug) cr(ul)

dw o 8’11;5 \.\,../ 611:3 \,V_/ 6’11;1
1 \_\/1_/ ,__::1 \_\q_/ {:1 \_\q_/
T 1 =

1 i

This implies that the gradient d%% exponentially shrinks to zero as the number of
layers in the network increases.

Hence the vanishing gradient problem.

¢ |ngeneral, bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

¢ Note the importance of a proper initialization scheme.



Rectified linear units

[Slide from G. Louppe]

Instead of the sigmoid activation function, modern neural networks are for most
based on rectified linear units (ReLU) (Glorot et al, 2011):

ReLU(z) = max(0, x)

] ] ] ]
-100 -75 -50 =25 0.0 25 5.0 75 100



Rectified linear units

[Slide from G. Louppe]

Note that the derivative of the ReLU function is

0 ifz<0

1 otherwise

d

10—

08—

0.6 —

04 —

0.2 —

0.0 -
I I ] ] i I | ] i
-100 -75 -50 -25 0.0 25 5.0 75 10.0

For x = 0, the derivative is undefined. In practice, it is set to zero.



Rectified linear units

[Slide from G. Louppe]
Therefore,

dg 50’(%5)w 3J(u3)w 0o (u1)
dwi ~ Ous ° Ouz - O

S > M " L -

r

Sy oy oy

=1 =1 =1

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

¢ The RelLU unit dies when its input is negative, which might block gradient
descent.

e Thisis actually a useful property to induce sparsity.

¢ Thisissue can also be solved using leaky RelLUs, defined as
LeakyReLU(z) = max(az, x)

forasmallaa € R" (eg, @ = 0.1).
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