
Introduction to Machine Learning
Neural Networks

Journées Machine Learning et Physique nucléaire

29-30 Octobre 2019 - Orsay

Julien Donini

LPC/Université Clermont Auvergne

Julien Donini 2

Outline

1) Introduction to Machine Learning

2) Classification

3) Neural Networks

4) Popular NN algorithms

Julien Donini 3

References (non exhaustive !) & credits
Classical Machine Learning textbooks

● Elements of statistical learning (ESL), Hastie et al., Springer

● An Introduction to Statistical Learning (ISLR), Hastie et al. Springer

➢ Both books available online: http://web.stanford.edu/~hastie/pub.htm

● Pattern Recognition and Machine Learning, Bishop, Springer

● Deep learning book, I. Goodfellow et al, http://www.deeplearningbook.org/

A *lot* of courses, lectures and tutorial on the web

● Online courses: DataCamp, Coursera, Andrew Ng (http://cs229.stanford.edu/)

● CERN lectures (ex: Kagan https://indico.cern.ch/event/619370)

● 2 recommended lectures:

● François Fleuret (EPFL)https://fleuret.org/ee559/

● Gilles Louppe (University Liège)https://github.com/glouppe/info8010-deep-learning

● ML cheatsheet: https://ml-cheatsheet.readthedocs.io/en/latest/index.html

http://web.stanford.edu/~hastie/pub.htm
http://www.deeplearningbook.org/
https://indico.cern.ch/event/619370
https://fleuret.org/ee559/
https://github.com/glouppe/info8010-deep-learning
https://ml-cheatsheet.readthedocs.io/en/latest/index.html

Julien Donini 4

What is Machine Learning

Based on mathematics, statistics and algorithmics + computer power
● Determine complex models from data
● Prediction and inference

Machine Learning is not recent
● Artificial Neural Network (theory 40’s, first functional networks 60’s)
● Decision Trees (~80’s)
● Used in HEP since many years – but sometime with scepticism.

Renaissance of the field since ~10 years
● Deep Learning (first DNN in HEP arxiv:2014.4735)
● Graphics Processing Units for fast and scalable calculations
● New recent algorithms: GAN (2014), Adam minimization (2014), ...

https://arxiv.org/abs/1402.4735

Julien Donini 5

Buzzwords

Google trends: 2004-2019

Google books: 1950-2008

AI

ML

Data Mining

Julien Donini 6

What is Machine Learning

y(x)

x: input data of (multidimensional) variables

y(x): output (multidimensional) values

where y is determined by “machine”

Data

Output

Julien Donini 7

What is Machine Learning

y(x,w) = t

Training phase

Input data generally consist of a set of:
● x

i
: known input features (or variables)

● t
i
: known target values (or label)

→ Learn y(x) to reproduce t: determine weights w

Testing

determine y (therefore t) for a any new set of x values

Data

Output weights

Target

Julien Donini 8

Type of learning
Supervised learning
● Given: training data and labels (i.e type of data)
● Training and testing phases, generalization

→ Regression, classification ...

Unsupervised learning
● Given: training data and no label

→ Clustering, dimensionality reduction, ...

Semi-supervised learning
● A mix of the above, ex: training data + few labels

Variants
● Reinforcement learning (learn by trial and errors)
● Active learning (use partial labels)
● ...

Julien Donini 9

Regression

[bishop]

Given training data {x
i
,t

i
}, learn a function y(x) to predict t given x.

Output y consists of one (or more) continuous variables → Regression
● Ex: linear regression: data is fit with a linear function of weights

w
i
: weights (coefficients)

h
i
(x): any function of x

Julien Donini 10

Classification

[ESL]

Given training data {x
i
,t

i
}, learn a function y(x) to predict t given x.

Output y consists of one (or more) categories →Classification

Example (2D):

Data coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by a function.

Orange shaded region: space classified as ORANGE

Blue region: space classified as BLUE.

y(x
1
,x

2
) > 0.5 →ORANGE

y(x
1
,x

2
) < 0.5 →BLUE

Boundary: y(x
1
,x

2
) = 0.5

x
1

x
2 Linear classifier

Julien Donini 11

Clustering

[bishop]

Given data {x
i
,y

i
} without label, determine groups of similar types.

→ Clustering

Julien Donini 12

Classification

1. LDA: brute force classification

2. Perceptron: Machine Learning 101

3. Logistic regression: one neuron network

Julien Donini 13

Notations

Julien Donini 14

Linear Discriminant Analysis

Consider set of observations x with known class (or target) t → training data

Classification: find a good predictor for the class for any new observation x

Assume that events in both classes (t=0 and t=1) are normally distributed

→ mean and variances: and respectively.

t=0

t=1

Julien Donini 15

Linear Discriminant Analysis

Probability for an observation x for a given class {0 or 1} is:

This Classifier is called Quadratic Discriminant Analysis (QDA)

If same covariance matrices (Σ
0
 = Σ

1
 = Σ): Linear Discriminant Analysis (LDA)

Objective is to calculate analytically using training dataset

Julien Donini 16

Linear Discriminant Analysis

Let’s consider P(x|t=1), using Bayes rule we have:

And, using the sigmoid function:

we get:

[Louppe / Fleuret]

Julien Donini 17

Linear Discriminant Analysis
[Louppe / Fleuret]Therefore:

In practice all parameters (μ
0
, μ

1
, Σ, a, b) are calculated from training data.

Julien Donini 18

Linear Discriminant Analysis

https://scikit-learn.org/stable/modules/lda_qda.html

https://scikit-learn.org/stable/modules/lda_qda.html

Julien Donini 19

Perceptron algorithm

Julien Donini 20

Perceptron algorithm

One of the oldest ML classification algorithm (Rosenblatt 1958)

Goal is to find a separating hyperplane between two classes

Online algorithm: process one observation at a time.

N observations: x

Target values t :

Model:

sign(x)

Julien Donini 21

Perceptron algorithm

Initialize all weights (to 0)

For each training example (x
i
, t

i
):

● Calculate
● If

→ Update weights

i.e mistake on positive:

 mistake on negative:

η: learning rate (number <1)
● Repeat until all examples are correctly classified

Determine optimal weight with iterative procedure:

Perceptron convergence theorem: if the data is linearly separable
then the perceptron algorith is guaranteed to find an optimal solution.

Julien Donini 22

Perceptron algorithm at work

Convergence of the
perceptron learning
algorithm.

[bishop]

w

w

w w

Decision boundary

Misclassified
point

Misclassified
point

Julien Donini 23

Logistic regression

Julien Donini 24

Logistic regression

Despite its name the logistic regression is a classification algorithm.

It uses the sigmoid function to return a probability value between 0 and 1.

Consider a classification problem with two classes C
1
 and C

2
.

The probability of an event being in class C
1
 given data x is:

The class decision rule is then:

Julien Donini 25

Logistic regression

To make a predictive model we need:
● Training dataset : data features x and target values t = {0 or 1}
● Data weights w (w

i
 and bias term w

0
)

● Determine w by minimizing a cost function E(w) (a.k.a Error function)

For this we use the Cross-Entropy cost function:

where

← Bernoulli random variable

 (see backup slides)

Julien Donini 26

Logistic regression

Weights are determined from the derivatives (gradient) of E(w)

For this we can show that:

Which is used to demonstrate:

However there is no analytical solution to:

→ The error function is minimized by repeated gradient steps:

 Gradient Descent

where

Julien Donini 27

Gradient descent

Julien Donini 28

Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of E(w) iteratively:

k: iteration, η: learning speed

Repeat until convergence.

E(w)

w
1

w
2

start

convergence

Julien Donini 29

Stochastic gradient descent

Gradient descent can be computationally costly for large N since the
gradient is calculated over full training set.

→ Solution: Stochastic gradient descent

Compute gradient on a small batch of events (can be 1 event):

Stochastic behaviour can also allow avoiding local minima.

Method is widely used in neural networks

Julien Donini 30

Towards Neural Networks

Julien Donini 31

Neuron

The basic unit of a neural network is the neuron: an activation function f
that receives as input weighted data and produces a single output value.

(The idea was originally motivated by biology but is still far from reality.)

x
1

x
2

x
D

f

Neuron

Output

Data
features

w
1

w
2

w
1

w
D

weights

b

bias

...

f is an activation function

Julien Donini 32

Activation function

Threshold Logic Unit

First mathematical model for a neuron (McCulloch and Pitts, 1943).

Assumes Boolean inputs and outputs.

Julien Donini 33

Activation function

Perceptron

Similar except that inputs are real (Rosenblatt, 1958).

Julien Donini 34

Activation function

Sigmoid function

Weighted data features are passed to sigmoid function σ(x)

Julien Donini 35

Activation function

Julien Donini 36

Intermediate layer with 2 neurons

x
1

x
2

x
D

f Output

w’
1

...

f

f

w
11

w
1D

w
21

w
2D

w’
2

b
1

b
2

b
3

Julien Donini 37

Intermediate layer with K neurons

x
1

x
2

x
D

f Output

w’
1

...

f

f

w
11

w
1D

w
K1

w
KD

w’
K

(bias terms not shown in the figure)
…

..

…
..

Julien Donini 38

Generalization

The output of one layer composed of K neurons is:

This step can be generalized to L layers of K
L
 neurons each:

x: input data NN output: y(x,w) = x⁽L)

Julien Donini 39

Multilayer perceptron

Architecture can be generalized to any number of layers and outputs

→ Multilayer perceptron, also known as fully connected feedforward network

 (Input to the layers from preceding nodes only).

Weights are obtained by minimizing an error function E(w) using
(stochatic) gradient descent.

Julien Donini 40

Classification & regression

NN can be used both for classification and regression

Classification
● 2-classes: output layer = 1 neuron with, e.g., sigmoid activation function

→probability y
1
(x) to be in 1 class

● Multi-classes (C classes): output layer = C neurons

→ probability to be in each class {y
1
(x), …, y

C
(x)}

For this Softmax activation function can be used:

Regression
● No activation function in output layer → Real unbounded y(x) values

(Could have more than 1 output neuron)

Julien Donini 41

Cost & loss functions

The NN aims at minimizing a cost function over training events
● Generally a loss function of output and target values

Cost function

(a.k.a Error function
or Empirical risk or
… loss function)

Training events
(all events, or
batch of events)

Loss function

NN output for
event x

i
 and

weights w Target value
for event i

Examples:

Mean square error

Cross entropy

Julien Donini 42

Training a NN in 3 steps

1) Forward pass

Compute values at each neuron. Ex for L layers:

Input
data

NN output

Values for hidden layers

For each layer j we define:

where f: activation function and

Julien Donini 43

Training a NN in 3 steps

1) Forward pass

Compute values at each neuron. Ex for L layers:

Input
data

NN output

Values for hidden layers

2) Backward pass: backpropagation

Compute the cost function E(W) and its gradient

→ calculate the gradient of the loss function for all NN weights (and bias)

Julien Donini 44

Training a NN in 3 steps

Example: MLP network with 2 layers (1 hidden, 1 output)

H
id

d
en

 layer
O

u
tp

u
t l ayer

Input data

NN output

Use chain rule to compute
derivatives of the loss

F
o

rw
ar

d
 p

as
s

B
ackw

a rd
 p

ass

Julien Donini 45

Training a NN in 3 steps

3) Gradient step

Update all NN weights and bias terms

Summation is performed on all N training events or batch of events.

Julien Donini 46

Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Forward propagation:

Mean square error loss:
● Here let’s assume that for this event target value is t=0 →

← NN output value

Input

Julien Donini 47

Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Backward propagation:

Note that:

Julien Donini 48

Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Backward propagation:
Updated weights

→ New output value y = 0.55,

closer to t=0 target value

Julien Donini 49

Universal approximation theorem

Theorem (Cybenko 1989, Hornik et al. 1991) states that a feed-forward
network with a single hidden layer containing a finite number of neurons
can approximate any continuous functions in Rn space.

Cybenko (1989):http://link.springer.com/article/10.1007%2FBF02551274

http://link.springer.com/article/10.1007%2FBF02551274

Julien Donini 50

Universal approximation theorem

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP

1 neuron:

[Figures: Louppe]

Julien Donini 51

Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP

2 neurons:

Julien Donini 52

Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP

3 neurons:

Julien Donini 53

Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP

6 neurons:

Julien Donini 54

Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP

13 neurons:

Julien Donini 55

Universal approximation theorem

Even a single hidden-layer network can represent any classification
problem if the decision surface is locally linear (smooth).

Any function can be approximated (up to any precision) but the hidden layer
may be infeasibly large and may fail to learn and generalize correctly, as
representing is not the same as learning.

Deeper models can reduce the number of units required to represent the
desired function and can reduce the amount of generalization error.

Julien Donini 56

Going deep

Adding layers can help uncovering specific data patterns [Montufar, 1402.1869]:

The absolute value activation function g(x
1
,x

2
) → |x

1
|,|x

2
| folds a 2D space twice.

Each hidden layer of a deep neural network can be associated to a folding operator.

The folding can identify symmetries in the boundaries that the NN can represent.

“We can interpret the use of a deep architecture as expressing a belief
that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output.”

“This suggests that using deep architectures does indeed express a
useful prior over the space of functions the model learns.

[goodfellow et al. http://www.deeplearningbook.org]

http://www.deeplearningbook.org/

Julien Donini 57

Neural Networks today

http://www.asimovinstitute.org/neural-network-zoo/

Neuromorphic computing

http://www.asimovinstitute.org/neural-network-zoo/

Julien Donini 58

Popular NN algorithms

Autoencoders

Generative Adversarial Networks

Convolution networks

Recurrent NN & LSTM

For a short review see e.g. here

https://medium.com/cracking-the-data-science-interview/a-gentle-introduction-to-neural-networks-for-machine-learning-d5f3f8987786

Julien Donini 59

Autoencoders

NN designed for unsupervised learning (i.e no labels) for anomaly detection

In general acts as data-compression model
● Encode a given input into a representation of smaller dimension.
● Decoder used to reconstruct the input back from the encoded version.

Typical loss function:

Julien Donini 60

Denoising Autoencoders (DAE)

Autoencoder that receives a corrupted data point as input and is trained
to predict the original, uncorrupted data point as its output.

[image R. Khandelwal]

DAE trained to map corrupted data points xx
back to original data points x (red crosses).
The AE learns the vector field (g(f()-x).xx

[goodfellow et al. http://www.deeplearningbook.org]

https://medium.com/datadriveninvestor/deep-learning-different-types-of-autoencoders-41d4fa5f7570
http://www.deeplearningbook.org/

Julien Donini 61

Variational Autoencoders (VAE)

VAE [Kingma et al., 1312.6114] are probabilistic networks that are part of deep
generative models.

Loss = Kullback-Leibler divergence (how much learned distribution deviate from
unit Gaussian)

+ Reconstruction loss (how well input and output agree)

https://arxiv.org/abs/1312.6114

Julien Donini 62

Variational Autoencoders (VAE)

For more information on VAE see these nice blogs: here, here and here.

x

μ, σ

z

x

y

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://anotherdatum.com/vae.html
http://kvfrans.com/variational-autoencoders-explained/

Julien Donini 63

Generative Adversarial Network
arXiv:1406.2661 (Ian Goodfellow et. al)

x: data (image, real or fake)

D(x): probability that x came
from training data rather than
generator G

z: latent space vector (e.g.
standard normal distribution).

G(z): generator function, maps z
to data-space

D(G(z)): probability that the output of the generator G is a real image.

D tries to maximize the probability it correctly classifies reals and fakes (logD(x)),

G tries to minimize probability that D will predict outputs are fake (log(1−D(G(x)))).

GAN loss function:

Julien Donini 64

Convolutional NN

For more information see also beginner's guide to CNN

Deep neural networks used primarily to classify images, cluster them by
similarity, perform object recognition within scenes, …
Original paper Yan Lecun et al., 1998: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Input image scanned in sequence of steps

→ Convolution: filtering image using weight matrices

→ Subsampling: reduce filtered image (feature maps) to lower dimensional space

→ Final features are passed as a vector to MLP for classification

https://skymind.ai/wiki/convolutional-network
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Julien Donini 65

Convolution and maxpooling

For cool animation see here

Convolution

Maxpooling / Downsampling
Takes the largest value from one
patch of an image

Local image decomposed in RGB features,
each being passed through 2 sets of filters

R

G

B

https://cs231n.github.io/convolutional-networks/

Julien Donini 66

Recurrent NN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM are capable of remembering information for long periods of time.

Recurrent neural network (RNN)

Applications: speech
recognition, language
modeling, translation,
image captioning…

Long Short Term Memory networks (LSTM)

LSTM contains four
interacting layers in
each cell that enable
to forget or update
information at each
iteration

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Julien Donini 67

ML software, tools and interfaces
Internal (HEP) tools
ROOT framework for data storage and processing
Multivariate Analysis: TMVA for mostly BDT and (deep) NN
Specific for Neural Networks: NeuroBayes

External tools
Data format: text, csv, images, HDF5, ...
ML libraries: Keras+TensorFlow, Pytorch, scikit-learn (no DL), ...
All kinds of popular algorithms: CNN, GAN, RNN, LSTM, AE, VAE ...

Interfaces and middleware
PyMVA: Interface TMVA and Keras
Several middleware file format conversion solutions:

arxiv:1807.02876

https://root.cern.ch/tmva
https://twiki.cern.ch/twiki/bin/view/Main/NeuroBayes
https://www.hdfgroup.org/solutions/hdf5/
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/
https://arxiv.org/abs/1807.02876

Julien Donini 68

Notebooks

Jupyter notebooks: jupyter.org

Install using Anaconda:
www.anaconda.com

Julien Donini 69

Scikit-learn (scikit-learn.org)

Julien Donini 70

Deep Learning libraries

Pytorch.org

Keras.io
www.tensorflow.org

Julien Donini 71

ML and HEP

Based on classification in Machine Learning in High Energy Physics
Community White Paper, https://arxiv.org/abs/1807.02876

1.Detectors & accelerators

2.Simulation

3.Object Reconstruction, Identification, and Calibration

4.Real Time Analysis and Triggering

5.Uncertainty Assignment

6.Learning the Standard Model – searches for anomalies

7.Matrix Element Method with ML

8.Theory Applications

9.Computing Resource Optimization

https://arxiv.org/abs/1807.02876

Julien Donini 72

ML and HEP

P
h

ysics L
ette rs B

 7
43 (20

1 5) 23
5–25

5

Data analysis
● Precision measurements
● Searches for new physics
● Background rejection
● ...

Performances
● Trigger and particle identification
● Object reconstruction
● Energy/mass resolution
● Anomaly detection
● ...

Computing
● Best access to popular datasets
● ...

C
M

S
-D

P
S

-20 17
-02

3

Julien Donini 73

ML and HEP: recent bibliography
Reviews/guides

Machine Learning in High Energy Physics Community White Paper, https://arxiv.org/abs/1807.02876

Deep Learning and its Application to LHC Physics, https://arxiv.org/abs/1806.11484

Supervised deep learning in high energy phenomenology: a mini review, https://arxiv.org/abs/1905.06047

A guide for deploying Deep Learning in LHC searches: https://arxiv.org/abs/1909.03081

Machine learning and the physical sciences, https://arxiv.org/abs/1903.10563

Recent work

How to GAN LHC Events, https://arxiv.org/abs/1907.03764

Machine Learning Templates for QCD Factorization in the BSM Search , https://arxiv.org/abs/1903.02556

A GAN Approach for the Simulation of QCD Dijet Events at the LHC, https://arxiv.org/abs/1903.02433

Effective LHC measurements with matrix elements and machine learning, https://arxiv.org/abs/1906.01578

Variational Autoencoders for New Physics Mining at the Large Hadron Collider, https://arxiv.org/abs/1811.10276

A robust anomaly finder based on autoencoder, https://arxiv.org/abs/1903.02032

Novelty Detection Meets Collider Physics, https://arxiv.org/abs/1807.10261

Extending the Bump Hunt with Machine Learning, https://arxiv.org/abs/1902.02634

Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics, https://arxiv.org/abs/1909.10389

The Metric Space of Collider Events, https://arxiv.org/abs/1902.02346

https://arxiv.org/abs/1807.02876
https://arxiv.org/abs/1806.11484
https://arxiv.org/abs/1905.06047
https://arxiv.org/abs/1909.03081
https://arxiv.org/abs/1903.10563
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/1903.02556
https://arxiv.org/abs/1903.02433
https://arxiv.org/abs/1906.01578
https://arxiv.org/abs/1811.10276
https://arxiv.org/abs/1903.02032
https://arxiv.org/abs/1807.10261
https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/1909.10389
https://arxiv.org/abs/1902.02346

Julien Donini 74

Backup material

Julien Donini 75

ML in practice
Python resources
● A Crash Course in Python for Scientists :

http://nbviewer.jupyter.org/gist/rpmuller/5920182
● Introduction to scientific computing with Python:

http://github.com/jrjohansson/scientific-python-lectures
● Python Tutorial: https://www.codecademy.com/tracks/python

Notebooks basics
● Installation (recommended): https://www.anaconda.com/download
● Jupyter Notebook documentation: https://jupyter-notebook.readthedocs.io/en/stable/
● Interactive notebooks: https://mybinder.org/
● Introduction with video tutorial: https://www.youtube.com/watch?v=Duicsycntdo

Git
● Git documentation: https://book.git-scm.com/
● Github: https://github.com/
● GitLab (CERN) basics: https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
● Tutorial (in FR): https://github.com/clr-info/tuto-git

https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://github.com/jrjohansson/scientific-python-lectures
https://www.codecademy.com/tracks/python
https://www.anaconda.com/download
https://jupyter-notebook.readthedocs.io/en/stable/
https://mybinder.org/
https://www.youtube.com/watch?v=Duicsycntdo
https://book.git-scm.com/
https://github.com/
https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
https://github.com/clr-info/tuto-git
https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git

Julien Donini 76

Logistic regression for classification
[slide from kagan]

Julien Donini 77

Logistic regression
[slide from kagan]

Julien Donini 78

Vanishing Gradient
[Slide from G. Louppe]

Julien Donini 79

Vanishing Gradient
[Slide from G. Louppe]

Julien Donini 80

Vanishing Gradient
[Slide from G. Louppe]

Julien Donini 81

Vanishing Gradient
[Slide from G. Louppe]

Julien Donini 82

Rectified linear units
[Slide from G. Louppe]

Julien Donini 83

Rectified linear units
[Slide from G. Louppe]

Julien Donini 84

Rectified linear units
[Slide from G. Louppe]

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84

