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References (non exhaustive !) & credits
Classical Machine Learning textbooks

● Elements of statistical learning (ESL), Hastie et al., Springer

● An Introduction to Statistical Learning (ISLR), Hastie et al. Springer

➢ Both books available online: http://web.stanford.edu/~hastie/pub.htm  

● Pattern Recognition and Machine Learning, Bishop, Springer

● Deep learning book, I. Goodfellow et al, http://www.deeplearningbook.org/ 

A *lot* of courses, lectures and tutorial on the web

● Online courses: DataCamp, Coursera, Andrew Ng (http://cs229.stanford.edu/)

● CERN lectures (ex: Kagan https://indico.cern.ch/event/619370)

● 2 recommended lectures:

● François Fleuret (EPFL)https://fleuret.org/ee559/

● Gilles Louppe (University Liège)https://github.com/glouppe/info8010-deep-learning 

● ML cheatsheet: https://ml-cheatsheet.readthedocs.io/en/latest/index.html

http://web.stanford.edu/~hastie/pub.htm
http://www.deeplearningbook.org/
https://indico.cern.ch/event/619370
https://fleuret.org/ee559/
https://github.com/glouppe/info8010-deep-learning
https://ml-cheatsheet.readthedocs.io/en/latest/index.html
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What is Machine Learning

Based on mathematics, statistics and algorithmics + computer power
● Determine complex models from data
● Prediction and inference

Machine Learning is not recent
● Artificial Neural Network (theory 40’s, first functional networks 60’s)
● Decision Trees (~80’s)
● Used in HEP since many years – but sometime with scepticism. 

Renaissance of the field since ~10 years
● Deep Learning (first DNN in HEP arxiv:2014.4735)
● Graphics Processing Units for fast and scalable calculations
● New recent algorithms: GAN (2014), Adam minimization (2014), ...

https://arxiv.org/abs/1402.4735
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Buzzwords

Google trends: 2004-2019

Google books: 1950-2008

AI

ML

Data Mining
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What is Machine Learning

y(x)

x: input data of (multidimensional) variables

y(x): output (multidimensional) values

where y is determined by “machine”

Data

Output
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What is Machine Learning

y(x,w) = t

Training phase

Input data generally consist of a set of: 
● x

i
: known input features (or variables)

● t
i
: known target values (or label)

→ Learn y(x) to reproduce t: determine weights w

Testing

determine y (therefore t) for a any new set of x values

Data

Output weights

Target
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Type of learning
Supervised learning
● Given: training data and labels (i.e type of data)
● Training and testing phases, generalization

→ Regression, classification ...

Unsupervised learning
● Given: training data and no label

→ Clustering, dimensionality reduction, ...

Semi-supervised learning
● A mix of the above, ex: training data + few labels

Variants
● Reinforcement learning (learn by trial and errors)
● Active learning (use partial labels)
● ...
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Regression

[bishop]

Given training data {x
i
,t

i
}, learn a function y(x) to predict t given x. 

Output y consists of one (or more) continuous variables → Regression 
● Ex: linear regression: data is fit with a linear function of weights 

w
i
: weights (coefficients)  

h
i
(x): any function of x
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Classification

[ESL]

Given training data {x
i
,t

i
}, learn a function y(x) to predict t given x. 

Output y consists of one (or more) categories →Classification

Example (2D): 

Data coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by a function. 

Orange shaded region: space classified as ORANGE

Blue region: space classified as BLUE.

y(x
1
,x

2
) > 0.5 →ORANGE

y(x
1
,x

2
) < 0.5 →BLUE 

Boundary: y(x
1
,x

2
) = 0.5

x
1

x
2 Linear classifier



Julien Donini 11

Clustering

[bishop]

Given data {x
i
,y

i
} without label, determine groups of similar types.

→ Clustering  
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Classification

1. LDA: brute force classification

2. Perceptron: Machine Learning 101

3. Logistic regression: one neuron network
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Notations
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Linear Discriminant Analysis

Consider set of observations x with known class (or target) t → training data

Classification: find a good predictor for the class for any new observation x

Assume that events in both classes (t=0 and t=1) are normally distributed

→ mean and variances:               and               respectively.

t=0

t=1
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Linear Discriminant Analysis

Probability for an observation x for a given class {0 or 1} is:

This Classifier is called Quadratic Discriminant Analysis (QDA)

If same covariance matrices (Σ
0
 = Σ

1
 = Σ): Linear Discriminant Analysis (LDA) 

Objective is to calculate analytically                   using training dataset   
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Linear Discriminant Analysis

Let’s consider P(x|t=1), using Bayes rule we have:

And, using the sigmoid function:

we get:

[Louppe / Fleuret]
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Linear Discriminant Analysis
[Louppe / Fleuret]Therefore:

In practice all parameters (μ
0
, μ

1
, Σ, a, b) are calculated from training data.  
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Linear Discriminant Analysis

https://scikit-learn.org/stable/modules/lda_qda.html 

https://scikit-learn.org/stable/modules/lda_qda.html
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Perceptron algorithm
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Perceptron algorithm

One of the oldest ML classification algorithm (Rosenblatt 1958)

Goal is to find a separating hyperplane between two classes

Online algorithm: process one observation at a time.

N observations: x

Target values t : 

Model: 

sign(x)
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Perceptron algorithm

Initialize all weights (to 0)

For each training example (x
i
, t

i
):

● Calculate
● If  

→ Update weights

i.e mistake on positive: 

     mistake on negative:

η: learning rate (number <1)
● Repeat until all examples are correctly classified 

Determine optimal weight with iterative procedure:

Perceptron convergence theorem: if the data is linearly separable 
then the perceptron algorith is guaranteed to find an optimal solution.
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Perceptron algorithm at work

Convergence of the 
perceptron learning 
algorithm.

[bishop]

w

w

w w

Decision boundary

Misclassified 
point

Misclassified 
point
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Logistic regression
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Logistic regression

Despite its name the logistic regression is a classification algorithm.

It uses the sigmoid function to return a probability value between 0 and 1.

Consider a classification problem with two classes C
1
 and C

2
.

The probability of an event being in class C
1
 given data x is:

The class decision rule is then:
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Logistic regression

To make a predictive model we need:
● Training dataset : data features x and target values t = {0 or 1}
● Data weights w (w

i
 and bias term w

0
) 

● Determine w by minimizing a cost function E(w) (a.k.a Error function)

 

For this we use the Cross-Entropy cost function:

where

← Bernoulli random variable

    (see backup slides)
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Logistic regression

Weights are determined from the derivatives (gradient) of E(w)

For this we can show that:

Which is used to demonstrate:

However there is no analytical solution to:

→ The error function is minimized by repeated gradient steps: 

     Gradient Descent 

where
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Gradient descent
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Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of E(w) iteratively: 

k: iteration, η: learning speed

Repeat until convergence.

E(w)

w
1

w
2

start

convergence
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Stochastic gradient descent

Gradient descent can be computationally costly for large N since the 
gradient is calculated over full training set.

→ Solution: Stochastic gradient descent

Compute gradient on a small batch of events (can be 1 event):

Stochastic behaviour can also allow avoiding local minima.

Method is widely used in neural networks
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Towards Neural Networks
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Neuron

The basic unit of a neural network is the neuron: an activation function f 
that receives as input weighted data and produces a single output value.

(The idea was originally motivated by biology but is still far from reality.)

x
1

x
2

x
D

f

Neuron

Output

Data 
features

w
1

w
2

w
1

w
D

weights

b

bias

...

f is an activation function



Julien Donini 32

Activation function

Threshold Logic Unit

First mathematical model for a neuron (McCulloch and Pitts, 1943).

Assumes Boolean inputs and outputs.
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Activation function

Perceptron

Similar except that inputs are real (Rosenblatt, 1958).
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Activation function

Sigmoid function

Weighted data features are passed to sigmoid function σ(x)
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Activation function
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Intermediate layer with 2 neurons

x
1

x
2

x
D

f Output

w’
1

...

f

f

w
11

w
1D

w
21

w
2D

w’
2

b
1

b
2

b
3
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Intermediate layer with K neurons

x
1

x
2

x
D

f Output

w’
1

...

f

f

w
11

w
1D

w
K1

w
KD

w’
K

(bias terms not shown in the figure)
…

..

…
..
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Generalization

The output of one layer composed of K neurons is:

This step can be generalized to L layers of K
L
 neurons each:

x: input data NN output: y(x,w) = x⁽L)
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Multilayer perceptron

Architecture can be generalized to any number of layers and outputs

→ Multilayer perceptron, also known as fully connected feedforward network 

    (Input to the layers from preceding nodes only).

Weights are obtained by minimizing an error function E(w) using 
(stochatic) gradient descent.
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Classification & regression

NN can be used both for classification and regression

Classification
● 2-classes: output layer = 1 neuron with, e.g., sigmoid activation function

→probability y
1
(x) to be in 1 class

● Multi-classes (C classes): output layer = C neurons

→ probability to be in each class {y
1
(x), …, y

C
(x)} 

For this Softmax activation function can be used:

Regression
● No activation function in output layer → Real unbounded y(x) values

(Could have more than 1 output neuron)
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Cost & loss functions

The NN aims at minimizing a cost function over training events
● Generally a loss function of output and target values 

Cost function 

(a.k.a Error function 
or Empirical risk or 
… loss function)

Training events 
(all events, or 
batch of events)

Loss function

NN output for 
event x

i
 and 

weights w Target value 
for event i

Examples:

Mean square error

Cross entropy
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Training a NN in 3 steps

1) Forward pass

Compute values at each neuron. Ex for L layers:

Input 
data

NN output

Values for hidden layers

For each layer j we define:

where f: activation function and 
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Training a NN in 3 steps

1) Forward pass

Compute values at each neuron. Ex for L layers:

Input 
data

NN output

Values for hidden layers

2) Backward pass: backpropagation

Compute the cost function E(W) and its gradient

→ calculate the gradient of the loss function for all NN weights (and bias)
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Training a NN in 3 steps

Example: MLP network with 2 layers (1 hidden, 1 output)

H
id

d
en

 layer
O

u
tp

u
t l ayer

Input data

NN output

Use chain rule to compute 
derivatives of the loss

F
o

rw
ar

d
 p

as
s

B
ackw

a rd
 p

ass
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Training a NN in 3 steps

3) Gradient step

Update all NN weights and bias terms

Summation is performed on all N training events or batch of events.
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Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Forward propagation:

Mean square error loss:
● Here let’s assume that for this event target value is t=0 →  

← NN output value

Input
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Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Backward propagation:

Note that:
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Concrete example

w
11

w
12

w
21

w
22

w’
1

w’
2

x
1

x
2

y

b’

b

Simple NN architecture (1 hidden layer, 1 output):
Initial weights

Backward propagation:
Updated weights

→ New output value y = 0.55,

closer to t=0 target value
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Universal approximation theorem

Theorem (Cybenko 1989, Hornik et al. 1991) states that a feed-forward 
network with a single hidden layer containing a finite number of neurons 
can approximate any continuous functions in Rn space.

Cybenko (1989):http://link.springer.com/article/10.1007%2FBF02551274

http://link.springer.com/article/10.1007%2FBF02551274
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Universal approximation theorem

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP 

1 neuron:

[Figures: Louppe]
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Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP 

2 neurons:
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Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP 

3 neurons:
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Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP 

6 neurons:
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Universal approximation theorem

[Figures: Louppe]

Illustration: let’s try to approximate a (1D) function with a 1-layer LMP 

13 neurons:
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Universal approximation theorem

Even a single hidden-layer network can represent any classification 
problem if the decision surface is locally linear (smooth).

Any function can be approximated (up to any precision) but the hidden layer 
may be infeasibly large and may fail to learn and generalize correctly, as 
representing is not the same as learning.

Deeper models can reduce the number of units required to represent the 
desired function and can reduce the amount of generalization error.
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Going deep

Adding layers can help uncovering specific data patterns [Montufar, 1402.1869]: 

The absolute value activation function g(x
1
,x

2
) → |x

1
|,|x

2
| folds a 2D space twice.

Each hidden layer of a deep neural network can be associated to a folding operator.  

The folding can identify symmetries in the boundaries that the NN can represent.

“We can interpret the use of a deep architecture as expressing a belief 
that the function we want to learn is a computer program consisting of 
multiple steps, where each step makes use of the previous step’s output.”

“This suggests that using deep architectures does indeed express a 
useful prior over the space of functions the model learns.

[goodfellow et al. http://www.deeplearningbook.org]

http://www.deeplearningbook.org/
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Neural Networks today

http://www.asimovinstitute.org/neural-network-zoo/

Neuromorphic computing

http://www.asimovinstitute.org/neural-network-zoo/
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Popular NN algorithms

Autoencoders

Generative Adversarial Networks

Convolution networks

Recurrent NN & LSTM

For a short review see e.g. here

https://medium.com/cracking-the-data-science-interview/a-gentle-introduction-to-neural-networks-for-machine-learning-d5f3f8987786
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Autoencoders

NN designed for unsupervised learning (i.e no labels) for anomaly detection 

In general acts as data-compression model 
● Encode a given input into a representation of smaller dimension.
● Decoder used to reconstruct the input back from the encoded version.

Typical loss function:
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Denoising Autoencoders (DAE)

Autoencoder that receives a corrupted data point as input and is trained 
to predict the original, uncorrupted data point as its output.

[image R.  Khandelwal]

DAE trained to map corrupted data points xx 
back to original data points x (red crosses). 
The AE learns the vector field (g(f( )-x).xx

[goodfellow et al. http://www.deeplearningbook.org]

https://medium.com/datadriveninvestor/deep-learning-different-types-of-autoencoders-41d4fa5f7570
http://www.deeplearningbook.org/
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Variational Autoencoders (VAE)

VAE [Kingma et al., 1312.6114] are probabilistic networks that are part of deep 
generative models.

Loss = Kullback-Leibler divergence (how much learned distribution deviate from 
unit Gaussian)

+ Reconstruction loss (how well input and output agree)

https://arxiv.org/abs/1312.6114
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Variational Autoencoders (VAE)

For more information on VAE see these nice blogs: here, here and here. 

x

μ, σ

z

x

y

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://anotherdatum.com/vae.html
http://kvfrans.com/variational-autoencoders-explained/
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Generative Adversarial Network
arXiv:1406.2661 (Ian Goodfellow et. al)

x: data (image, real or fake)

D(x): probability that x came 
from training data rather than 
generator G

z: latent space vector (e.g. 
standard normal distribution). 

G(z): generator function, maps z 
to data-space

D(G(z)): probability that the output of the generator G is a real image.

D tries to maximize the probability it correctly classifies reals and fakes (logD(x)),

G tries to minimize probability that D will predict outputs are fake (log(1−D(G(x)))).

GAN loss function:
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Convolutional NN

For more information see also beginner's guide to CNN

Deep neural networks used primarily to classify images, cluster them by 
similarity, perform object recognition within scenes, …
Original paper Yan Lecun et al., 1998: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Input image scanned in sequence of steps

→ Convolution: filtering image using weight matrices

→ Subsampling: reduce filtered image (feature maps) to lower dimensional space

→ Final features are passed as a vector to MLP for classification

https://skymind.ai/wiki/convolutional-network
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Convolution and maxpooling

For cool animation see here 

Convolution

Maxpooling / Downsampling
Takes the largest value from one 
patch of an image 

Local image decomposed in RGB features, 
each being passed through 2 sets of filters

R

G

B

https://cs231n.github.io/convolutional-networks/
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Recurrent NN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

LSTM are capable of remembering information for long periods of time.

Recurrent neural network (RNN) 

Applications: speech 
recognition, language 
modeling, translation, 
image captioning…

Long Short Term Memory networks (LSTM)

LSTM contains four 
interacting layers in 
each cell that enable 
to forget or update 
information at each 
iteration

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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ML software, tools and interfaces
Internal (HEP) tools
ROOT framework for data storage and processing
Multivariate Analysis: TMVA for mostly BDT and (deep) NN
Specific for Neural Networks: NeuroBayes

External tools
Data format: text, csv, images, HDF5, ...
ML libraries: Keras+TensorFlow, Pytorch, scikit-learn (no DL), ...
All kinds of popular algorithms: CNN, GAN, RNN, LSTM, AE, VAE ...

Interfaces and middleware
PyMVA: Interface TMVA and Keras
Several middleware file format conversion solutions:

arxiv:1807.02876

https://root.cern.ch/tmva
https://twiki.cern.ch/twiki/bin/view/Main/NeuroBayes
https://www.hdfgroup.org/solutions/hdf5/
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/
https://arxiv.org/abs/1807.02876
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Notebooks

Jupyter notebooks: jupyter.org 

Install using Anaconda: 
www.anaconda.com
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Scikit-learn (scikit-learn.org)
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Deep Learning libraries

Pytorch.org

Keras.io
www.tensorflow.org
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ML and HEP

Based on classification in Machine Learning in High Energy Physics 
Community White Paper, https://arxiv.org/abs/1807.02876

1.Detectors & accelerators

2.Simulation 

3.Object Reconstruction, Identification, and Calibration

4.Real Time Analysis and Triggering 

5.Uncertainty Assignment

6.Learning the Standard Model – searches for anomalies

7.Matrix Element Method with ML

8.Theory Applications 

9.Computing Resource Optimization

https://arxiv.org/abs/1807.02876
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ML and HEP

P
h

ysics L
ette rs B

 7
43 (20

1 5) 23
5–25

5

Data analysis
● Precision measurements
● Searches for new physics
● Background rejection
● ...

Performances
● Trigger and particle identification
● Object reconstruction
● Energy/mass resolution
● Anomaly detection
● ...

Computing
● Best access to popular datasets
● ...

C
M

S
-D

P
S

-20 17
-02

3
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ML and HEP: recent bibliography
Reviews/guides

Machine Learning in High Energy Physics Community White Paper, https://arxiv.org/abs/1807.02876 

Deep Learning and its Application to LHC Physics, https://arxiv.org/abs/1806.11484 

Supervised deep learning in high energy phenomenology: a mini review, https://arxiv.org/abs/1905.06047 

A guide for deploying Deep Learning in LHC searches: https://arxiv.org/abs/1909.03081 

Machine learning and the physical sciences, https://arxiv.org/abs/1903.10563 

Recent work

How to GAN LHC Events, https://arxiv.org/abs/1907.03764 

Machine Learning Templates for QCD Factorization in the BSM Search , https://arxiv.org/abs/1903.02556 

A GAN Approach for the Simulation of QCD Dijet Events at the LHC, https://arxiv.org/abs/1903.02433 

Effective LHC measurements with matrix elements and machine learning, https://arxiv.org/abs/1906.01578 

Variational Autoencoders for New Physics Mining at the Large Hadron Collider, https://arxiv.org/abs/1811.10276 

A robust anomaly finder based on autoencoder, https://arxiv.org/abs/1903.02032 

Novelty Detection Meets Collider Physics, https://arxiv.org/abs/1807.10261 

Extending the Bump Hunt with Machine Learning, https://arxiv.org/abs/1902.02634 

Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics, https://arxiv.org/abs/1909.10389 

The Metric Space of Collider Events, https://arxiv.org/abs/1902.02346 

https://arxiv.org/abs/1807.02876
https://arxiv.org/abs/1806.11484
https://arxiv.org/abs/1905.06047
https://arxiv.org/abs/1909.03081
https://arxiv.org/abs/1903.10563
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/1903.02556
https://arxiv.org/abs/1903.02433
https://arxiv.org/abs/1906.01578
https://arxiv.org/abs/1811.10276
https://arxiv.org/abs/1903.02032
https://arxiv.org/abs/1807.10261
https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/1909.10389
https://arxiv.org/abs/1902.02346
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Backup material
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ML in practice
Python resources
● A Crash Course in Python for Scientists : 

http://nbviewer.jupyter.org/gist/rpmuller/5920182
● Introduction to scientific computing with Python: 

http://github.com/jrjohansson/scientific-python-lectures
● Python Tutorial: https://www.codecademy.com/tracks/python

Notebooks basics
● Installation (recommended): https://www.anaconda.com/download
● Jupyter Notebook documentation: https://jupyter-notebook.readthedocs.io/en/stable/
● Interactive notebooks: https://mybinder.org/
● Introduction with video tutorial: https://www.youtube.com/watch?v=Duicsycntdo

Git
● Git documentation: https://book.git-scm.com/
● Github: https://github.com/
● GitLab (CERN) basics: https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
● Tutorial (in FR): https://github.com/clr-info/tuto-git

https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git

http://nbviewer.jupyter.org/gist/rpmuller/5920182
http://github.com/jrjohansson/scientific-python-lectures
https://www.codecademy.com/tracks/python
https://www.anaconda.com/download
https://jupyter-notebook.readthedocs.io/en/stable/
https://mybinder.org/
https://www.youtube.com/watch?v=Duicsycntdo
https://book.git-scm.com/
https://github.com/
https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
https://github.com/clr-info/tuto-git
https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git
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Logistic regression for classification
[slide from kagan]
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Logistic regression
[slide from kagan]
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Vanishing Gradient
[Slide from G. Louppe]
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Vanishing Gradient
[Slide from G. Louppe]
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Vanishing Gradient
[Slide from G. Louppe]
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Vanishing Gradient
[Slide from G. Louppe]
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Rectified linear units
[Slide from G. Louppe]
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Rectified linear units
[Slide from G. Louppe]
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Rectified linear units
[Slide from G. Louppe]
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