Progress on $B_s^o \rightarrow D^o[K^-\pi^+\pi^o]\varphi$

Charline Rougier - Vincent Tisserand February-July 2019

Data include run 1 and run 2 except 2018 data

Selection of $D^0 \rightarrow K \pi \pi^0$: Three body decay

Dalitz plot $(m^2(K^2\pi^+), m^2(K^2\pi^0))$ in MC simulation amplitude model from the E691 experiment:

D⁰ decays toward $K\pi\pi^0$ involving Spin-1 resonant particle.

- Br(D⁰→Kππ⁰)=(14.2±0.5)%
 - ♦ Br(D⁰→ $K^{*0}\pi^{0}$)=(1.93±0.24)%
 - Br(D⁰ \rightarrow K^{*-} π^+)=(2.27^{+0.40})%
 - Br($D^0 \rightarrow K^- \rho^+$)=(11.1±0.7)%

Background event are uniformly distributed in the plane whereas signal event are gather around resonants particles.

The Dalitz weight.

The probability of phase space $(m^2(K^-\pi^+), m^2(K^-\pi^0))$ occupation is given by:

$$P_{D^{0} \to K^{-} \pi^{+} \pi^{0}}(m_{K^{-} \pi^{+}}^{2}; m_{K^{-} \pi^{0}}^{2}) = |A_{0} + A_{\overline{K}^{*0}} + A_{K^{*-}} + A_{\rho^{+}}|^{2} \text{ with } A_{R} = \frac{C_{R}e^{i\frac{\phi_{R}\pi}{180}}\sqrt{\frac{\Gamma_{R}}{2\pi}\cos\theta_{ij}^{*}}}{m_{R} - m_{ij} - i\frac{\Gamma}{2}}$$

The above probability is convoluted with two gaussians which represents the experimental precision of $m^2(K^{-}\pi^{+})$ and $m^2(K^{-}\pi^{0})$:

$$DW(m^{2}(K^{+}\pi^{+}, m^{2}(K^{-}\pi^{0}) = (\mathcal{G}_{1} \times \mathcal{G}_{2}) \otimes P_{D^{0} \to K^{-}\pi^{+}\pi^{0}}(x, y) \\ = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx dy \frac{1}{\sqrt{2\pi\sigma_{m^{2}(K^{-}\pi^{+})}^{2}}} \exp \frac{(x - m^{2}(K^{-}\pi^{+}))^{2}}{2\sigma_{m^{2}(K^{-}\pi^{+})}^{2}} \times \frac{1}{\sqrt{2\pi\sigma_{m^{2}(K^{-}\pi^{0})}^{2}}} \exp \frac{(x - m^{2}(K^{-}\pi^{0}))^{2}}{2\sigma_{m^{2}(K^{-}\pi^{0})}^{2}} \times P_{D^{0} \to K^{-}\pi^{+}\pi^{0}}(x, y)$$

Need to calibrate the resolution of the two gaussian $\sigma^2_{m^2(K^-\pi^+)}$, and $\sigma^2_{m^2(K^-\pi^0)}$ in Monte-Carlo simulation.

Resolution of the two gaussians.

Run 1

MVA method:BDTD.

Selection of the π^0 in the $D^0 \rightarrow K^- \pi^+ \pi^0$ using a MVA method.

Five variables used:

- Log(Dalitz weight)
- gamAsym: $(E_{\chi_1}-E_{\chi_2})/(E_{\chi_1}+E_{\chi_2})$
- gam_isNotETot: probability of the two ४ of not being an electron
- gam_isNotHTot: probability of the two ४ of not being a hadron
- gamEtMoy: $(E^{T}_{\chi_{1}}+E^{T}_{\chi_{2}})/2$

MVA method:BDTD.

Before the

cut

т², (GeV/c²)²

Dalitz plot of Run 2

Efficiency

Cut on the Dalitz shape

Before the cut

After the cut

Efficiency

Reproduce the same cut as $B^0 \rightarrow D^0 \pi^+ \pi^-$

Preliminary cut: cluster ten cuts on discriminating variables.

- ★ **B**⁰_s mass candidate: [5.1 ; 6.0] GeV
- ★ π⁰ mass candidate: [117.0 ; 155.0] MeV
- ★ RICHs identification
 - Probability of the D⁰ daughters of being a kaon: 2%
 - **Probability of the D⁰ daughters of being a kaon:** 0.2%
- ★ D⁰ mass candidate: [1795.7 ; 1932.3] MeV
- **★** χ^2 /nDoF of the D⁰ vertex: <6
- **\star \chi^2 of the D⁰ impact parameters:** >16
- ★ Difference of the D⁰ and B⁰_s vertex position z: >3
- **★** χ^2 /nDoF of the B⁰_s vertex: <4
- ★ **Cos(\Theta_{p})**, Θ_{D} being the angle between the direction of the trajectory of the B_{s}^{0} and the direction defined by (primary vertex; B_{s}^{0} vertex): >0.99995
- **\star** χ^2 of the B⁰_s impact parameters: >4

Effect on B⁹ mass.

221 633 / 6 820 958 = 3.25%

Monte Carlo signal: 45.76%

717 876 / 17 647 130 = 4.06%

Monte Carlo signal: 42.70%

Difference $m(D^{0^*})-m(D^0)$.

B⁰→D*⁻[D⁰π⁻]π⁺ have a strong contribution to the signal so the D* event must be reject. Difference compute with the D⁰ constrain to the π⁰ mass and to the primary vertex. m(D^{0*})-m(D⁰)=145.4257±0.0017 MeV/c² (PDG)

Run 1

Run 2

Cut on the difference $m(D^{0^*})-m(D^0)$.

Resolution of this mass difference in LHCb: $0.8 MeV/c^2$. Reject event \in [140.621, 150.221] GeV i.e. 6 σ of the resolution

Effect on D⁰ mass.

Run 1

Run 2

220 932 / 221 633 = 99.68%

Monte Carlo signal: 99.96%

714 876 / 717 876 = 99.67%

Monte Carlo signal: 99.98%

MVA: Fisher analysis $B^0 \rightarrow D^0 \pi^+ \pi^-$

Selection with M.V.A method.

Optimised for D⁰KK

Five variables used:

- Min(BdauChi2IP)
 - The reconstruction quality of the B daughters h⁺ and h⁻. To avoid correlation, the minimum is taken instead of the two variables.
- Min(BdauPT)
 - The transverse momentum of the B daughters h⁺ and h⁻. To avoid correlation, the minimum is taken instead of the two variables.
- CHI2_BFlightDistance
 - > The χ^2 of the B⁰ flight distance.
- D0CHI2IP
 - > The χ^2 of the impact parameters of the D⁰.
- Tvar
 - Cosinus of the angle between the transverse momentum of the D⁰ and of the transverse momentum of each of the B⁰ daughters. To avoid correlation, the minimum is taken instead of the two variables.

Fisher response cut at -0.0581.

Run 1

Effect on B⁰_s mass.

Run 2

PID B⁰_s daughter

PID daughter h1>14%

Run 1

Run 2

MC Run 1

PID daughter h2>14%

Run 1

MC Run 1

Effect on B⁰_s mass.

Run 1

1 826 / 115 309 = 1.58%

Monte Carlo signal: 85.53%

6 828 / 381 695 = 1.79%

Monte Carlo signal: 81.12%

B⁰_s mass, sum of run 1+2

8 654 events

KK candidate, sum of run 1+2

$B^0 \rightarrow D^0 \pi^+ \pi^-$ mass, sum of run 1+2

The constraints on the mass cut have been released

Fit, sPlot method

Fit of the mass of the KK candidate

Fit of the mass of the B⁰_s candidate

Backupe slide

B^0_s mass range \in [5.115, 6.] GeV.

Run 1

π^0 mass range \in [117., 155.] MeV.

π^0 mass range: effect on DO mass

PID of D⁰ daughter (pion>0.2%)

Run 1

Run 2

MC Run 1

PID of D⁰ daughter (kaon>2%)

Run 1

0.6

0.7

0.8

0.9

Prob(K)

0

0.1

0.2

0.3

0.4

0.5

<u>PID of D⁰ daughter: effect on D⁰ mass</u>

Run 1

<u> D⁰ mass range ∈ [1795.7, 1932.3] MeV</u>

Run 1

x2/nDof of the D0 vertex>6

MC Run 1

Run 1

Run 2

x2 of the D0 IP>16

MC Run 1

Run 1

Run 2

<u>Difference of the DO and BO vertex z position>3</u>

Run 1

Effect on D⁰ mass

MC Run 1

2200

2200

Run 1

Effect on B mass

<u>x2/nDof of the B0 vertex>4</u>

Run 1

cos(ODIRA) of B0>0.99995

MC Run 1

Run 1

$\chi 2of BO IP>4$

Run 1

