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1+1 CFT with a TT deformation

Integrable QFT with a irrelevant interaction => UV cut off scale 

To O(✏) the metric (A.1) takes the form

ds2 =
d⇢2

⇢2
� ⇢2cdx

+dx� +

✓
⇢4c
⇢2

� ⇢2c

◆ ⇣ ✏

2
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⌘
+O(✏2) . (A.9)

From the behavior of the metric near r = rc and the usual definition of the holographic stress tensor

[17], we deduce the following expectation values in the dual field theory:

⌦
T++(x

+)
↵
= �

⇢2c
16⇡G

✏A0(x+),
⌦
T��(x

�)
↵
= �

⇢2c
16⇡G

✏B0(x�) . (A.10)

We combine this equation with (A.8) to obtain (4.20). We note that there is an intriguing connection

between this equation and the Nambu-Goto string: if we rename X�
⌘ �✏B, X�

⌘ �✏A, we obtain

the Virasoro conditions (2.28).
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[2] A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “T T̄ -deformed 2D Quantum Field

Theories,” JHEP 10 (2016) 112, 1608.05534.

[3] S. Dubovsky, R. Flauger, and V. Gorbenko, “Solving the Simplest Theory of Quantum

Gravity,” JHEP 09 (2012) 133, 1205.6805.

[4] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J.

Theor. Phys. 38 (1999) 1113–1133, hep-th/9711200. [Adv. Theor. Math. Phys.2,231(1998)].

[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical

string theory,” Phys. Lett. B428 (1998) 105–114, hep-th/9802109.

[6] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291,

hep-th/9802150.

[7] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic

Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104

(1986) 207–226.

[8] I. Heemskerk and J. Polchinski, “Holographic and Wilsonian Renormalization Groups,” JHEP

06 (2011) 031, 1010.1264.

[9] J. de Boer, E. P. Verlinde, and H. L. Verlinde, “On the holographic renormalization group,”

JHEP 08 (2000) 003, hep-th/9912012.

[10] E. P. Verlinde and H. L. Verlinde, “RG flow, gravity and the cosmological constant,” JHEP 05

(2000) 034, hep-th/9912018.

32

2

[MM: I’m not sure about �.] and the light cone is given by:
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Just to keep everything explicit, we note that to go between the two coordinate systems (1.1)

and (1.6) the appropriate coordinate transformation is:
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Taking a non-rotating BTZ BH (r� = 0) as an example provides a check on our conventions, as

there we get

hT i = hT̄ i =
r
2
+

32⇡GN

=
(2⇡/�)2

48⇡/c
=

⇡ c

12�2
, (1.9) TTthermal

where I used the Brown-Henneaux result c = 3
2GN

. This result agrees with what is written in both

papers, so we are using the same normalizations as them.

On the CFT side, Cardy has performed the following computation for states that have a Eu-

clidean path integral representation. He introduces a T T̄ deformation that he trades for two

Hubbard-Stratonovich fields:

S = SCFT � µ

Z
dxd⌧ T T̄ ! S = SCFT +

Z
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from which it follows that

h⇠i = �µhT i h⇠̄i = �µhT̄ i . (1.11) ExpVal

To linera order, one can regard (1.10) (before integrating over ⇠, ⇠̄) as the CFT coupled to a random

metric. Here I have a disagreement with Cardy. From (1.4) we can read o↵ the metric
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TT Energy Spectrum     =      Spectrum of Black Hole in a Box
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We note that from (2.6) the theory doesn’t have a ground state for µ̃ < 0.

An attempt at relating this formula to AdS/CFT is to compute the total quasilocal energy and

angular momentum of a BTZ black hole with a finite radial cuto↵. In the coordintes (1.6) we get:

E(R) =
R

4µ

"
1�

r
1� µM

R2
+

µ2J2

4R4

#
, (2.8) BTZcutoff

where we chose ✏0(rc) in the reference conveniently. If we multiply this result by rc just as in (2.6),

we obtain a dimensionless quantity, which is straightforward to match to (2.6):

M
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12
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8GN

= `n

µ̃ =
16⇡GN

r2c
=

24⇡

c

1

r2c
.

(2.9) Match

The first two are completely standard in AdS/CFT. What we are getting from this derivation is µ.

Note that µ̃ = µ/R
2, so presumably we have to choose R = 1 to get the relation we were aiming

for:

µ =
24⇡

c

1

r2
. (2.10) Match2

Our concrete proposal is that the deformed CFT (1.1) is dual to the original gravitational theory

(i.e. the gravity dual of the original CFT) living on a compact sub-region of AdS space-time

ds2AdS =
dr2

r2
+ r2 g↵�dx

↵dx� , r < rc , (1.2)

defined by restricting the radial coordinate to the finite interval r < rc, with rc related to µ via

µ =
16⇡G

r2c
=

24⇡

c

1

r2c
. (1.3)

Throughout the paper we set `AdS = 1, hence the Brown-Henneaux relation used in the above equation

is c = 3
2G [7]. At large central charge c, we can identify

ZQFT(g↵� , µ) = exp
⇣
�

1
16⇡G Scl

�
r2c g↵�

�⌘
, (1.4)

where Scl(r2cg↵�) is the classical action of the 3D gravity theory restricted to the region r<rc, with

Dirichlet boundary conditions ds2|r=rc = r2cg↵�dx
↵dx� on the metric and �i|r=rc = 0 on all bulk fields

�i. Here we assume that the classical matter fields do not contribute any stress-energy source.

The proposal has interesting implications for the holographic renormalization group program. In

the formulation of [8] (see also [9, 10, 11, 12]) the CFT partition sum ZCFT is identified with the

gravity partition function in which the bulk path integral is cut into an IR and UV part via

ZCFT(g̃↵� , ✏) =

Z
Dg↵�  IR

�
r2c g↵�

�
 UV

�
r2c g↵� , ✏

�2g̃↵�
�
. (1.5)

Here ✏ denotes the short distance cuto↵ of the CFT. Here we have suppressed the integral over all

matter fields: we assume that their saddle point value can be consistently set to zero.  UV is a

path integral over metrics of the form (1.2) over the region rc < r < 1/✏ with prescribed boundary

conditions, while  IR is an integral over all metrics in the region r < rc with boundary conditions that

match those of  UV. The IR wave-function  IR satisfies the Wheeler-DeWitt constraints, and via

the holographic dictionary, is to be identified with a QFT path integral with a UV cuto↵ of size 1/rc.

The UV wave-function  UV is related to the Wilsonian action by an functional Legendre transform,

and is local on distance scales larger than 1/rc.

In this language our proposal states that

ZQFT (g↵� , µ) =  IR
�
r2c g↵�

�
(1.6)

with µ and rc related via (1.3). The full CFT partition function is insensitive to how we choose

our renormalization scale, hence (1.5) is independent of rc. Then the role of  UV is to undo the

T T̄ deformation of the CFT to get back the CFT result for the full partition function. It is also

important to note that if the CFT has a large N counting, where c = O(N2), the T T̄ deformation

is an irrelevant double trace deformation. There has been earlier speculation that the sharp radial

cuto↵ in the bulk could be related to this kind of deformations [8].
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Total energy of a black hole with radial cut-off

-10 -5 5 10 15
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Figure 1: The energy levels En at L = 2⇡ and J = 0 as a function of µ for di↵erent values of
E(0) = �n + �̄n �

c
12 . States with E(0) > 0 that correspond to black holes in holographic CFTs are

plotted in blue, while low-lying states are plotted in orange. For µ > 0 that is the relevant regime in
our study we used solid lines, while for µ < 0 the spectrum is plotted with dotted lines. The levels
exhibit a square root singularity at the critical value µE(0) = 2⇡. This indicates that, for given µ,
the energy spectrum of the deformed CFT is bounded by E < 8

µ , indicated on the plot by a dashed
black line.

hard to check that the solution to (2.16) is given by

En(µ,L)L ⌘ E(µ̃) =
2⇡

µ̃

h
1�

p
1 � 2µ̃Mn + µ̃2J2

n

i

Mn = �n+ �̄n�
c

12
, Jn = �n� �̄n , µ̃ ⌘

⇡µ

L2
.

(2.17)

This relation reduces to the usual CFT value at µ̃ ! 0, and to the formula (2.11) for �n = �̄n = 0.

The spectrum as a function of µ̃ takes the form plotted in Fig. 1 for �n = �̄n. With an eye

towards large c CFTs, we have scaled the energies and µ̃ by c. The lowest energy level plotted is the

ground state. The state with �n + �̄n = c
12 (corresponding to the M = 0 BTZ black hole) has zero

energy independent of µ.

2.5 Thermodynamics

The formula (2.17) has a nice scaling form and does not depend on the UV cuto↵. It can be read as

describing the µ dependence of an energy level En at fixed L, or as the variation of the energy under an

adiabatic change in the circumference L at fixed µ. Note that En(µ,L,�n, �̄n) is a monotonic function

of �n and �̄n, so energy levels indeed do no cross as we vary µ or L. Hence the entropy remains µ

independent and at high energy is given by the Cardy formula S = 2⇡
p

c
6(�n�

c
24)+2⇡

q
c
6(�̄n�

c
24)

[25].
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p = �⇢+ sT , and obtain the free energy as a function of the temperature [3]

F = E � TS =
2L

µ

✓
1 �

q
1 + T 2/T 2

H

◆
. (2.23)

The propagation speed vs of sound waves will play a central role in the comparison between the

deformed CFT and gravity. For the non-rotating case J = 0, we can compute vs via

vs =

s
@p

@⇢
=

1

1� ⇢/⇢H

=
1

p
1 � 2µ̃M

. (2.24)

with µ̃ = ⇡µ
L2 . We observe that for µ > 0 sound waves propagate at superluminal speeds, and moreover

that the temperature, pressure, and the sound speed all diverge at a critical values for the energy

and entropy density. Near this critical value, the compressibility and the heat capacity of the system

both go to zero. This singular behavior is another indication that the deformed CFT has a UV cuto↵.

As we will see in the following sections, the superluminal sound speed and the divergence of pressure

and temperature all have a direct physical interpretation in the gravity dual description.

2.6 Equivalence to Nambu-Goto

There exists an instructive relationship between the deformed CFT and the Nambu-Goto (NG) string.

This relationship is most explicitly understood for the case that the CFT has central charge c =

24, where it can be shown to be a direct equivalence with the worldsheet theory of critical string

theory. Moreover, this reformulation makes manifest that, in this special case, the T T̄ deformed CFT

represents a well defined, unitary and exactly soluble quantum system. This observation could help

alleviate some possible worries the reader may have about the UV completeness of the theory.

Starting with some general CFT with c = 24, we define the deformed theory by adding two free

massless scalar fields X+ and X�. The total action reads

SQFT = SCFT +
1

2µ

Z
d2x @↵X

+@↵X� . (2.25)

In the analogy with a string worldsheet theory, the free fields play the role of light-cone target space

coordinates, whereas the CFT represents some general (abstract) 24-dimensional target space. Note

that the kinetic term of the scalars X± has the opposite sign to the usual NG string. Just like

one would in the NG formulation of string theory, we supplement the free field equation of motion

@u@vX± = 0 with the Virasoro conditions

�@uX
+@uX

� + µT CFT
uu = 0 , �@vX

+@vX
� + µT CFT

vv = 0 . (2.26)

Here u and v denote the light-cone coordinates on the worldsheet. The constraints (2.26) implement

gauge invariance under arbitrary conformal transformations (u, v) ! (ũ(u), ṽ(v)). We can use this

invariance to choose special worldsheet coordinate (x+, x�) such that8

@+X
+ = @�X

� = 1 . (2.27)

8We thank Juan Maldacena for a helpful discussion on the usefulness of this particular light-cone gauge.
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where the expectation value is defined in the 2D worldsheet theory specified by the action (2.1).

Using a BRST formalism, we give an explicit characterization and construction of the physical states

and operators in the theory. Since the scalar fields and reparametrization ghosts are described by a

free field theory, our non-critical string formulation amounts to an exact non-perturbative solution

of the T T̄ deformed theory: the deformed amplitudes are obtained in a computable way from the

correlation functions of CFT.

2 T T̄ at c = 24 as a critical string

As a warm-up we start with a quick overview of the critical case, c = 24. The general case will follow

much of the same pattern. To a general c = 24 CFT, we associate its T T̄ deformed theory by adding

two free massless scalar fields X+ = X0 +X1 and X� = X0 �X1 and a pair of reparametrization

ghosts

SQFT = SCFT +

Z
d2z ⌘ab@X

a @̄Xb +

Z
d2z (b@̄c+ b̄@c̄) (2.1)

with ⌘ab a flat 2D target space metric. We will assume that the spatial target space direction is

compactified to a circle X1 ⌘ X1+2⇡R and restrict to the winding number one sector. Using radial

quantization, the periodicity condition reads

X1(e
2⇡iz, e�2⇡iz̄) = X1(z, z̄) + 2⇡R. (2.2)

Here and in the following, we use natural string units, in which the dimensionful coupling of the

T T̄ deformed theory, or equivalently, the string tension of the critical string theory defined by

eqrefxpmact, is set equal to 1.

We interpret (2.1) as a gauge fixed action obtained from a covariant action with a dynamical

2D metric, after going to the conformal gauge. The action (2.1) has a nilpotent BRST symmetry

and corresponding BRST charge Qbrst = Q+ Q̄ with

Q =

I
dz

⇣
c
�
TCFT + @X+@X�+

1

2
Tgh

�⌘
(2.3)

The physical content of the theory is specified by restricting the states and operators to the BRST

cohomology

Qbrst|physi = 0, |physi ' |physi + Qbrst|⇤i

⇥
Qbrst,Ophys

⇤
= 0, Ophys ' Ophys + [Qbrst, ⇤]

(2.4)

The above four equations (2.1), (2.2), (2.3) and (2.4) provide a complete non-perturbative definition

of the T T̄ deformed CFT on a cylinder. At the level of the energy spectrum, this equivalence has

been verified in [??]. Here we will focus our attention to the construction of the physical operators

and the definition of the correlation functions. First, let us briefly present a physical argument for

why the two theories are indeed equivalent [??].
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Target space = cylinder

2.1 Equivalence with T T̄

The BRST cohomology relations (2.4) formally impose the Virasoro conditions

@X+@X� + TCFT = 0 , @̄X+@̄X� + T̄CFT = 0 (2.5)

and implement gauge invariance under conformal transformations (z, z̄) ! (x+(z), x�(z̄)). We

could fix a temporal gauge, by choosing our worldsheet coordinate (x+, x�) such that

@X+ = @̄X� = 1 (2.6)

which identifies the worldsheet coordinates with the chiral halves of the target space light-cone

fields: X+(x+, x�) = x+ + X̃+(x�) and X�(x+, x�) = x� + X̃�(x+). The other halves are found

by integrating the Virasoro conditions

@+X
� + T CFT

++ = 0 , X�= x� +

Z x+

dx+T CFT
++ ,

=)

@�X
+ + T CFT

�� = 0 , X+= x+ +

Z x�

dx�T CFT
�� .

(2.7)

Equations (2.7) provide the quantum definition of the light-cone coordinate fields. The self-

consistency of this identification is well established for c = 24 via the no ghost theorem for the

critical NG string. For our context, it demonstrates that the T T̄ deformed CFT with c = 24 is a

well defined quantum theory, in which all Hilbert states have positive norm. We will use elements

of the proof of the no ghost theorem below.

Note that the periodic boundary condition (2.2) of the target space field X1 = 1
2(X

+
� X�)

implies that the lightcone coordinates x± satisfy an operator valued periodic identification

(x+, x�) ' (x++2⇡R� P�, x
�+2⇡R� P+) (2.8)

with

P+ =

I
dx+T CFT

++ , P� =

I
dx�T CFT

�� (2.9)

the total CFT lightcone momenta. This indicates that the theory in the temporal gauge is a non-

trivial interacting system. Based on the above description, it is not hard to convince oneself that

this interacting theory is indeed equivalent to the T T̄ deformed CFT. A direct way to see this is to

plug (2.7) back into the free field action (2.1). This directly reproduces the T T̄ interaction term.

S =

Z
d2z (⌘ab@X

a @̄Xb + qR̂ log(@X+@̄X�) (2.10)

T = @X+@X� + q @2log @X+, (2.11)

T̄ = @̄X+@̄X� + q @̄2log @̄X� (2.12)

Oi(p)|0i= ||Oiiicft ||piix± (2.13)
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TT for general c  =  non-critical string with worldsheet action    
_

=>  preserves 2D Poincare symmetry 

+-1_
µ k

satisfies Virasoro algebra with  c = 24 (1+ k)
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An equivalent formulation starts from the dilaton gravity action

Classical solution can be parametrized in terms of free fields X+ and X- via:       

1 Introduction

2 CGHS model coupled to conformal matter

Here we review some of the literature on the CGHS and RST model, we will mostly follow

[VVrefs]. We start with the CGHS action coupled to a conformal field theory with central

charge c. The classical action is

S0 =
1

2⇡

Z
d2x

p
�g

h
e�2�(R+ 4(r�)2 + 4�2)

i
+ SCFT . (2.1)

Notice that here SCFT is not required to have c = 24. An important consequence is that

this will result in a conformal anomaly. Using a conformal gauge guv = �1
2e

2⇢ and other

components of the 2d metric zero, we can rewrite this action as

S0 =
1

⇡

Z
d2xe�2�

�
2@u@v⇢� 4@u�@v�+ �2e2⇢

�
+ SCFT (2.2)

At one-loop there are two contributions. One of them cancels the conformal anomaly, whereas

the other ensures that no ghosts couple to the outgoing Hawking radiation [refs]. Explicitly,

the one-loop correction to S0 is

S1 = � 1

8⇡

Z
d2x


c� 24

12
R̂

1

r̂2
R̂� 2�R̂

�
(2.3)

where the hat means that we use the metric ĝ = e�2�g. In the conformal gauge R̂ =

8e2(⇢��)@u@v(⇢� �) and so we get

S1 = � 1

⇡

Z
d2x [2(� 1)@u(⇢� �)@v(⇢� �)� 2�@u@v(⇢� �)] , (2.4)

with  = c/24. Let us introduce two variables that will be convenient later on,

⌦(u, v) = e�2� + � (2.5)

⇢̂(u, v) = ⇢� �. (2.6)

With these variables, the full action simplifies to

S =

Z
d2x

p
g
�
�R+ µ

�
+ SL(g) + SCFT (2.7)

3

in which we used ̂ = � 1. The stress tensor of this model is given by

Tuu = �2@u⌦@u⇢̂+ @2
u⌦� 2̂(@u⇢̂@u⇢̂� @2

u⇢) + TCFT
uu , (2.8)

and similarly for the other components. The equations of motion for ⌦ suggest that we can

parametrise ⇢̂ as

ds2 = @uX
+@vX

�dudv (2.9)

with X±(u, v) play the role of light cone target space coordinates. The metric ĝ is thus fully

specified by X±. The equation of ⇢̂ tell us that ⌦ can be written as

� = �µX+X� + !+(u) + !�(v). (2.10)

In these parametrisation, the action greatly simplifies,

S =
�2

⇡

Z
d2x@uX

+@vX
� + SCFT (2.11)

and is the reason why the coordinates X± are referred to as free field variables. Notice is

not really a free theory, due to the Virasoro constraints, demanding the full stress tensor

to vanish. Moreover, � has dimension �1 and so the first term is irrelevant. These non-

trivialities can be easily seen from the stress tensor,

Tuu = @uP+@uX
+ +

̂

2
@2
u log(@uX

+) + TCFT
uu (2.12)

where P± are defined through

@u!
+(u) = X�(u)@uX

+ � ̂

2
@u log(@uX

+). (2.13)

At the quantum level, P+ and @uX+ are canonically conjugate variables that satisfy

[@uX
+(u), @uP+(u

0)] = 2⇡i�0(u� u0), (2.14)

which means that the normal ordered stress tensor Tuu in (2.12) implies a Virasoro algebra

with central charge ctot = 2 � 12̂ + c 6= 26 I think we have to normalise the total action

S0 + S1 with an additional factor of 2, hence resulting in 1/2 in the commutation relation

between P+ and X+. Then you get ctot = 2�24̂+c = 26. Normally this will not matter, but

now the single contraction between the first and second term in T will acquire an additional

factor of 2. -Jorrit, which cancels the central charge coming from the reparametrisation

4
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provided that p satisfies the usual on-shell condition such that (L0�1)|�, pi = (L̄0�1)|�, pi = 0. Here

L0 = LX
0 + LCFT

0 , etc.

We claim that, even with the modified stress tensor (2.3), the momentum eigenstates of the X

CFT continue to be well behaved primary states. To verify this, we need to compute the OPE of the

extra term in T (z) proportional to  with the vertex operator eip ·X(0). We find that the extra term in

the OPE takes the simple universal form

�@2log
�
@X+(z)

�
eip ·X(0) = �@2 : log

⇣p�
z

+ @X+(z)
⌘
eip ·X(0):

(3.4)
' �



z2
eip ·X(0) + regular

indicating that the vertex operator eip ·X remains primary, but that (relative to the critical theory with

 = 0) the conformal dimension gets shifted from p2 to p2 � .

To obtain the physical spectrum, we need to pay attention to the precise form of the kinetic term

of the light-cone fields. In (2.1), the X action looks like that of a 2D string worldsheet

SX =

Z
d2z (Gab +Bab)@X

a@̄Xb (3.5)

in a constant target space metric Gab = ⌘ab and anti-symmetric tensor field Bab = B ✏ab with B = 1. In

a general background, the chiral momentum zero modes paL,R of the scalar fields, defined as the leading

term in the mode expansion

@Xa = �
ipaL
z

+ i
X

n 6=0

↵a
nz

n�1, @̄Xa = �
ipaR
z̄

+ i
X

n 6=0

↵̄a
nz̄

n�1, (3.6)

decompose into a sum of target space momenta pa and winding zero modes wa, via

paL,R =
1

2

�
pa ± (Gab

±Bab)wb

�
. (3.7)

In our case, the time like direction X0 is non-compact, whereas the spatial direction X1 is compactified

on a circle, as indicated in equation (2.2). The time-like momentum (= energy) is therefore continuous,

p0 2 R, and the timelike winding number vanishes, w0 = 0. The spatial momenta and winding zero

modes are both non-zero and quantized via p1 = n/R and w1 = mR, n,m 2 Z.
The T T̄ deformed CFT corresponds to the sector with winding number one w1 = R. In this sector,

we can parametrize the chiral momentum zero modes via

p0L = p0R =
E

2
+

BR

2
, p1L =

J

2R
+

R

2
, p1R =

J

2R
�

R

2
(3.8)

with E the target space energy and J the integer (angular) momentum along the spatial circle. Here

we kept the B-field parameter B. As we will see, it is usually set equal to its critial value B = 1.

The on-shell condition Ltot
0 � L̄tot

0 = 0 equates J with the di↵erence of the right- and left-moving

scale dimension of the CFT primary state

�R ��L = p21L � p21R = J (3.9)
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The other on-shell condition reads

Ltot
0 + L̄tot

0 � 2 = �2p20 + p21L + p21R +�L +�R � 2� 2 = 0 (3.10)

Inserting the parametrization (3.8), this condition results in the following relation between th energy

E of the deformed theory and the energy E ⌘
1
R(�L +�R �

c
12) of the unperturbed CFT

�2

✓
E

2
+

BR

2

◆2

+
J2

2R2
+

R2

2
+RE = 0. (3.11)

The solution to this equation coincides with the spectrum of the T T̄ deformed CFT

E = R

 
�B +

r
1 +

2E

R
+

J2

R4

!
(3.12)

provided we set B = 1.2 The above result generalizes the known match between the spectrum Nambu-

Goto theory and T T̄ deformed CFT to the case of general central charge.

3.2 Partition sum

Via the match of the spectrum, we are in principle assured that the thermal partition functions of the

non-critical string and the T T̄ theory both match. It is still instructive to see how this works in practice

from a functional integral perspective. We will indeed several subtleties.

Consider the generalized thermal partition

Z(↵,�) =
X

n

ei↵Jn�� En (3.13)

with inverse temperature � and chemical potential ↵ for the spatial momentum Jn. We can represent

Z(↵,�) as the partition function of the T T̄ deformed CFT on a euclidean two torus. We will parametrize

the 2-torus by means of a complex coordinate x = x1+�x0, where we assume that the real coordinates

x0 and x1 are both periodic with 2⇡R. Here � is a complex number, with real and imaginary part

related to ↵ and � via ↵ = 2⇡R�1 and � = 2⇡R�2.

It will be helpful to introduce the notation

⇤ = 2⇡R� = 4⇡2R2�2, � =
1

4⇡2R2
. (3.14)

Here ⇤ defines the volume of the 2 torus, and � defines the coupling constant of the T T̄ deformation.

The two are related via ⇤ = �2/�. Modular transformations of the torus act on �,⇤ and � in via

(� , ⇤ , � ) !

⇣ a� + b

c� + d
, ⇤ ,

�

|c� + d|2

⌘
(3.15)

2From the non-critical string perspective, it is in fact natural to include the B-field as an additional tunable coupling of

the deformed CFT. Most previous derivations of the correspondence between the T T̄ theory and the Nambu-Goto theory

do not explicitly emphasize the presence of the B-field.
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eip ·X(0) = �@2 : log

⇣p�
z

+ @X+(z)
⌘
eip ·X(0):

(3.4)
' �



z2
eip ·X(0) + regular

indicating that the vertex operator eip ·X remains primary, but that (relative to the critical theory with

 = 0) the conformal dimension gets shifted from p2 to p2 � .

To obtain the physical spectrum, we need to pay attention to the precise form of the kinetic term

of the light-cone fields. In (2.1), the X action looks like that of a 2D string worldsheet

SX =

Z
d2z (Gab +Bab)@X

a@̄Xb (3.5)

in a constant target space metric Gab = ⌘ab and anti-symmetric tensor field Bab = B ✏ab with B = 1. In

a general background, the chiral momentum zero modes paL,R of the scalar fields, defined as the leading

term in the mode expansion

@Xa = �
ipaL
z

+ i
X

n 6=0

↵a
nz

n�1, @̄Xa = �
ipaR
z̄

+ i
X

n 6=0

↵̄a
nz̄

n�1, (3.6)

decompose into a sum of target space momenta pa and winding zero modes wa, via

paL,R =
1

2

�
pa ± (Gab

±Bab)wb

�
. (3.7)

In our case, the time like direction X0 is non-compact, whereas the spatial direction X1 is compactified

on a circle, as indicated in equation (2.2). The time-like momentum (= energy) is therefore continuous,

p0 2 R, and the timelike winding number vanishes, w0 = 0. The spatial momenta and winding zero

modes are both non-zero and quantized via p1 = n/R and w1 = mR, n,m 2 Z.
The T T̄ deformed CFT corresponds to the sector with winding number one w1 = R. In this sector,

we can parametrize the chiral momentum zero modes via

p0L = p0R =
E

2
+

BR

2
, p1L =

J

2R
+

R

2
, p1R =

J

2R
�

R

2
(3.8)

with E the target space energy and J the integer (angular) momentum along the spatial circle. Here

we kept the B-field parameter B. As we will see, it is usually set equal to its critial value B = 1.

The on-shell condition Ltot
0 � L̄tot

0 = 0 equates J with the di↵erence of the right- and left-moving

scale dimension of the CFT primary state

�R ��L = p21L � p21R = J (3.9)
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Inserting the parametrization (3.8), this condition results in the following relation between th energy

E of the deformed theory and the energy E ⌘
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c
12) of the unperturbed CFT
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+
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2
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The solution to this equation coincides with the spectrum of the T T̄ deformed CFT

E = R

 
�B +

r
1 +

2E

R
+

J2

R4

!
(3.12)

provided we set B = 1.2 The above result generalizes the known match between the spectrum Nambu-

Goto theory and T T̄ deformed CFT to the case of general central charge.

3.2 Partition sum

Via the match of the spectrum, we are in principle assured that the thermal partition functions of the

non-critical string and the T T̄ theory both match. It is still instructive to see how this works in practice

from a functional integral perspective. We will indeed several subtleties.

Consider the generalized thermal partition

Z(↵,�) =
X

n

ei↵Jn�� En (3.13)

with inverse temperature � and chemical potential ↵ for the spatial momentum Jn. We can represent

Z(↵,�) as the partition function of the T T̄ deformed CFT on a euclidean two torus. We will parametrize

the 2-torus by means of a complex coordinate x = x1+�x0, where we assume that the real coordinates

x0 and x1 are both periodic with 2⇡R. Here � is a complex number, with real and imaginary part

related to ↵ and � via ↵ = 2⇡R�1 and � = 2⇡R�2.

It will be helpful to introduce the notation

⇤ = 2⇡R� = 4⇡2R2�2, � =
1

4⇡2R2
. (3.14)

Here ⇤ defines the volume of the 2 torus, and � defines the coupling constant of the T T̄ deformation.

The two are related via ⇤ = �2/�. Modular transformations of the torus act on �,⇤ and � in via

(� , ⇤ , � ) !

⇣ a� + b

c� + d
, ⇤ ,

�

|c� + d|2

⌘
(3.15)

2From the non-critical string perspective, it is in fact natural to include the B-field as an additional tunable coupling of

the deformed CFT. Most previous derivations of the correspondence between the T T̄ theory and the Nambu-Goto theory

do not explicitly emphasize the presence of the B-field.
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Spectrum



The complex scalar fields X(z, z̄) represent a mapping from the worldsheet torus into the target

space torus. We will assume that this mapping has wrapping number one. Conversely, each real scalar

field X0 and X1 represents (the inverse of) a mapping of a target space circle (the A-cycle or B-cycle

of the target space torus) into the worldsheet torus. The latter mapping is labeled by two winding

numbers, which we denote by w1 = (m1, n1) and w0 = (m0, n0), respectively. The remaining partition

function thus takes the form of a sum over winding sectors

Z(�, �̄,�) =
�2
⇡�

Z

F

d2⌧

⌧22

X

w

e�Scl(⇤,�,⌧,w) ZCFT(⌧, ⌧̄) (3.20)

where Scl(�, �, w) denotes the classical action of the solution to the classical equations of motion

@@̄Xcl
a = 0 of the scalar field labeled by the winding number w. This classical solution takes the

following simple form

Xcl
a (z, z̄) =

1

⌧ � ⌧̄

�
(na �ma⌧̄) z + (na �ma⌧) z̄

�
, (3.21)

which satisfy the boundary conditions

Xcl
a (z + 1, z̄ + 1) ⇠ Xcl

a (z, z̄) +ma, Xcl
a (z + ⌧, z̄ + ⌧̄) ⇠ Xcl

a (z, z̄) + na (3.22)

Plugging this solution back into the scalar field action, it is now straightforward to show that the sum

over winding sectors reduces to

X

w

e�Scl(⇤,�,⌧,w) =
X

n0,m0,n1,m12Z

0
exp

✓
�

⇤

⌧2�2
|n1 + n0� �m1⌧ �m0�⌧ |

2

◆
(3.23)

Here the 0 indicates that the sum is restricted to the elementary winding sectors for which

gcd(n0,m0) = gcd(n1,m1) = 1, n0m1 �m0n1 = 1. (3.24)

The first restriction implies that each real scalar field Xa has winding number 1, and the second re-

striction implies that the mapping from the worldsheet torus into the target space torus has wrapping

number one. Both restrictions are modular invariant, and the full sum (3.23) defines a modular expres-

sion. We can therefore restrict the integral over ⌧ in (3.20) the usual fundamental domain F = {|⌧1| <
1
2 ,

|⌧ | > 1}.

Alternatively, we could choose to integrate ⌧ over the full Poincaré upper half-plane H, and collapse

the sum over winding sector to a single term, say, with n0 = 1 and m1 = 1. This yields the following

final result for the T T̄ partition sum [??]

Z(�, �̄,�) =
�2
⇡�

Z

H

d2⌧

⌧22
exp

⇣
�

⇤

⌧2�2
|� � ⌧ |2

⌘
ZCFT(⌧, ⌧̄)

(3.25)

=
�2
⇡�

Z

H

d2⌧

⌧22
exp

⇣
�

1

�⌧2
|� � ⌧ |2

⌘
ZCFT(⌧, ⌧̄)

Note that this expression manifestly satisfies the modular invariance property (3.18): the measure, the

quantity in the exponent, and the CFT partition function are all invariant under the simultaneous
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The other on-shell condition reads

Ltot
0 + L̄tot

0 � 2 = �2p20 + p21L + p21R +�L +�R � 2� 2 = 0 (3.10)

Inserting the parametrization (3.8), this condition results in the following relation between th energy

E of the deformed theory and the energy E ⌘
1
R(�L +�R �

c
12) of the unperturbed CFT

�2

✓
E

2
+

BR

2

◆2

+
J2

2R2
+

R2

2
+RE = 0. (3.11)

The solution to this equation coincides with the spectrum of the T T̄ deformed CFT

E = R

 
�B +

r
1 +

2E

R
+

J2

R4

!
(3.12)

provided we set B = 1.2 The above result generalizes the known match between the spectrum Nambu-

Goto theory and T T̄ deformed CFT to the case of general central charge.

3.2 Partition sum

Via the match of the spectrum, we are in principle assured that the thermal partition functions of the

non-critical string and the T T̄ theory both match. It is still instructive to see how this works in practice

from a functional integral perspective. We will indeed several subtleties.

Consider the generalized thermal partition

Z(↵,�) =
X

n

ei↵Jn�� En (3.13)

with inverse temperature � and chemical potential ↵ for the spatial momentum Jn. We can represent

Z(↵,�) as the partition function of the T T̄ deformed CFT on a euclidean two torus. We will parametrize

the 2-torus by means of a complex coordinate x = x1+�x0, where we assume that the real coordinates

x0 and x1 are both periodic with 2⇡R. Here � is a complex number, with real and imaginary part

related to ↵ and � via ↵ = 2⇡R�1 and � = 2⇡R�2.

It will be helpful to introduce the notation

⇤ = 2⇡R� = 4⇡2R2�2, � =
1

4⇡2R2
. (3.14)

Here ⇤ defines the volume of the 2 torus, and � defines the coupling constant of the T T̄ deformation.

The two are related via ⇤ = �2/�. Modular transformations of the torus act on �,⇤ and � in via

(� , ⇤ , � ) !

⇣ a� + b

c� + d
, ⇤ ,

�

|c� + d|2

⌘
(3.15)

2From the non-critical string perspective, it is in fact natural to include the B-field as an additional tunable coupling of

the deformed CFT. Most previous derivations of the correspondence between the T T̄ theory and the Nambu-Goto theory

do not explicitly emphasize the presence of the B-field.
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1
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c
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E
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2
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The solution to this equation coincides with the spectrum of the T T̄ deformed CFT
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r
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R
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R4
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provided we set B = 1.2 The above result generalizes the known match between the spectrum Nambu-

Goto theory and T T̄ deformed CFT to the case of general central charge.

3.2 Partition sum
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X
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It will be helpful to introduce the notation
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�
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(3.15)

2From the non-critical string perspective, it is in fact natural to include the B-field as an additional tunable coupling of

the deformed CFT. Most previous derivations of the correspondence between the T T̄ theory and the Nambu-Goto theory

do not explicitly emphasize the presence of the B-field.
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where the expectation value is defined in the 2D worldsheet theory specified by the action (2.1).

Using a BRST formalism, we give an explicit characterization and construction of the physical states

and operators in the theory. Since the scalar fields and reparametrization ghosts are described by a

free field theory, our non-critical string formulation amounts to an exact non-perturbative solution

of the T T̄ deformed theory: the deformed amplitudes are obtained in a computable way from the

correlation functions of CFT.

2 T T̄ at c = 24 as a critical string

As a warm-up we start with a quick overview of the critical case, c = 24. The general case will follow

much of the same pattern. To a general c = 24 CFT, we associate its T T̄ deformed theory by adding

two free massless scalar fields X+ = X0 +X1 and X� = X0 �X1 and a pair of reparametrization

ghosts

SQFT = SCFT +

Z
d2z ⌘ab@X

a @̄Xb +

Z
d2z (b@̄c+ b̄@c̄) (2.1)

with ⌘ab a flat 2D target space metric. We will assume that the spatial target space direction is

compactified to a circle X1 ⌘ X1+2⇡R and restrict to the winding number one sector. Using radial

quantization, the periodicity condition reads

X1(e
2⇡iz, e�2⇡iz̄) = X1(z, z̄) + 2⇡R. (2.2)

Here and in the following, we use natural string units, in which the dimensionful coupling of the

T T̄ deformed theory, or equivalently, the string tension of the critical string theory defined by

eqrefxpmact, is set equal to 1.

We interpret (2.1) as a gauge fixed action obtained from a covariant action with a dynamical

2D metric, after going to the conformal gauge. The action (2.1) has a nilpotent BRST symmetry

and corresponding BRST charge Qbrst = Q+ Q̄ with

Q =

I
dz

⇣
c
�
TCFT + TX +

1

2
Tgh

�⌘
(2.3)

The physical content of the theory is specified by restricting the states and operators to the BRST

cohomology

Qbrst|physi = 0, |physi ' |physi + Qbrst|⇤i

⇥
Qbrst,Ophys

⇤
= 0, Ophys ' Ophys + [Qbrst, ⇤]

(2.4)

The above four equations (2.1), (2.2), (2.3) and (2.4) provide a complete non-perturbative definition

of the T T̄ deformed CFT on a cylinder. At the level of the energy spectrum, this equivalence has

been verified in [??]. Here we will focus our attention to the construction of the physical operators

and the definition of the correlation functions. First, let us briefly present a physical argument for

why the two theories are indeed equivalent [??].
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How do we recover the stress-tensor?

These are a generalization of the DDF operators of critical string theory.       

They satisfy the Virasoro algebra with central charge c

and can thus be identified with the stress-tensor of the deformed  CFT.

This is the key result used in the old proof of the no ghost theorem.

These are the well-known DDF operators, first discovered by DelGuidice, Divecchia and Fubini.

They satisfy the key property that the corresponding contour integrals

Ln =

I
dz T (1)

p+ (z), p+ =
n

R
(2.33)

generate the Virasoro algebra

[Ln,Lm] = (n�m)Ln+m +
c

12
(n3

� n)�nm (2.34)

with central charge c = 24. This should come as no surprise: via the Virasoro constraints (2.7)

in the light-cone gauge, the operators (2.32) and (2.33) are identified with the stress tensor and

Virasoro generators of the c = 24 transverse CFT. This identification plays a key role in the no

ghost theorem, the statement that the physical Hilbert space contains only positive norm states.

In writing equation (2.33), we implicitly assumed that we could work in the purely left-moving

sector. In other words, we had to assume that the right-moving momentum P� vanishes, so that

(2.8) implies that left-moving plane waves are periodic with period 2⇡R. This restriction to the

chiral sector e↵ectively turns o↵ the T T̄ interaction. This explains why conformal symmetry is

preserved within this subsector. The conformal symmetry is broken as soon as we include operators

with non-zero momentum along both light-cone directions.

As before, we introduce the ‘bare’ physical operator with light-cone momenta (p+, p�) via

T
(0)
bare(p+, p� ; z, z̄) = T (0)

p+ (z) V̄ (0)
p� (z̄) (2.35)

The corresponding (1,1) form operator

T
(1,1)
bare (p+, p� ; z, z̄) =

�
@X�+ ip+@ log @X+

�
@̄X�eip+X+(z)eip�X̄�(z̄) (2.36)

defines the momentum mode of the ‘bare’ CFT stress tensor in the (x+, x�) coordinate system.

We can also obtain the physical operator for the stress tensor via a di↵erent route, by directly

starting with the stress tensor of the CFT. Since the stress tensor does not transform as a primary

operator, we need to modify the construction used in the previous section. A straightforward

calculation shows that the following operator is BRST invariant

T
(0)
bare(p+, p� ; z, z̄) = c̄

�
cT CFT(z) + @2c

�
(@X+)�1@̄X� eip+X+(z)eip�X̄�(z̄) (2.37)

The extra @2c cancels the anomalous BRST transformation law due to the conformal anomaly.

Here, for later reference, we introduced the notation  = c
24 which for now is set equal to  = 1.

The (1,1) form version of this physical operator takes the form

T
(1,1)
bare (p+, p� ; z, z̄) = T CFT

++ (z) @X+ @̄X�eip+X+(z)eip�X̄�(z̄) (2.38)

T CFT
++ (z) =

�
T CFT(z) + 2

�
X+, z

 �
(@X+)�2 (2.39)

Here
�
f, z

 
= f 000

f 0 �
3
2

�f 00

f 0
�2

denotes the Schwarzian derivative. The right-hand side of (2.38) is

now a well-behaved (1,1) primary field. On the infinite plane, its integral redues to the momentum

mode of the CFT stress tensor
Z
d2z T (1,1)

bare (p+, p� ; z, z̄) =

Z
dx+dx� T++(x

+) ei(p+x++p�x�) (2.40)
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where X+ and X� are now non-chiral scalar fields. The plane wave operator thus acquires a

non-zero conformal dimension equal to p+p�. So j and j̄ are determined via the on-shell condition

j = h+ p+p�, j̄ = h̄+ p+p�. (2.29)

The . . . indicate extra terms needed to account for the e↵ect of normal ordering subtractions, that

are needed due to the OPE between the @X+ and @̄X� and the plane wave factor. In string theory

textbooks, one typically sidesteps these normal ordering issues by restricting to on-shell vertex

operators with j = j̄ = 1. Equation (2.29) then reduces to the usual mass-shell restriction on the

momenta. Here we are more ambitious, since we would like to consider correlation functions of

CFT operators placed at arbitrary locations on the light-cone cylinder. We thus need to associate

physical operators with arbitrary light-cone momenta to each CFT operator Oh,h̄.

The normal ordering subtleties that arise in defining the general operators (2.28) reflect the well

known fact that the string worldsheet is a non-local gravitational system. As seen both from the

OPE (2.24) and the solution (2.7) to the Virasoro constraints, the light-cone coordinates X+ and

X� are non-cummuting operators that must obey the Heisenberg uncertainty relation. The new

physical operators (2.28) can be thought of as gravitationally ‘dressed’ versions of the ‘bare’ physical

operators (3.6). We postpone the construction of the dressed operators until a later subsection.

2.3 Bare stress tensor

Next we turn to construction of the ‘bare’ physical operator corresponding to the CFT stress tensor.

For this, it is helpful to first introduce two basic types of physical operators made purely from the

lightcone scalar fields. The simplest are

V
(0)
p+ (z) = c @X+eip+X+(z)

(2.30)
V̄
(0)
p� (z̄) = c̄ @̄X�eip�X̄�(z̄).

In the light-cone gauge, the one-form versions reduce to pure plane wave factors eip+x+
and eip�x�

.

For p± 6= 0, these operators are in fact BRST exact. They will still be useful as building blocks.

A more interesting class of operators are given by

T (0)
p+ (z) =

�
c@X�+ ip+@c

�
eip+X+(z)

(2.31)
T̄ (0)
p� (z) =

�
c̄ @̄X++ ip�@̄c̄

�
eip�X̄�(z̄).

It is straightforward to verify that these operators are indeed BRST invariant. The extra ghost

contribution is needed to correct for the anomalous conformal transformation property of the first

term due to the normal ordering subtraction (or equivalently, the anomalous BRST variation due

to the appearance of a third order pole in the OPE with the BRST current).

The corresponding 1-form operators, obtained via integrating the descend equations, are

T (1)
p+ (z) =

�
@X�+ ip+@ log @X+

�
eip+X+(z)

(2.32)
T̄ (1)
p� (z̄) =

�
@̄X++ ip�@̄ log @̄X��eip�X̄�(z̄)

– 6 –

These are the well-known DDF operators, first discovered by DelGuidice, Divecchia and Fubini.

They satisfy the key property that the corresponding contour integrals

Ln =

I
dz T (1)

p+ (z), p+ =
n

R
(2.33)

generate the Virasoro algebra

[Ln,Lm] = (n�m)Ln+m +
c

12
(n3

� n)�nm (2.34)

with central charge c = 24. This should come as no surprise: via the Virasoro constraints (2.7)

in the light-cone gauge, the operators (2.32) and (2.33) are identified with the stress tensor and

Virasoro generators of the c = 24 transverse CFT. This identification plays a key role in the no

ghost theorem, the statement that the physical Hilbert space contains only positive norm states.

In writing equation (2.33), we implicitly assumed that we could work in the purely left-moving

sector. In other words, we had to assume that the right-moving momentum P� vanishes, so that

(2.8) implies that left-moving plane waves are periodic with period 2⇡R. This restriction to the

chiral sector e↵ectively turns o↵ the T T̄ interaction. This explains why conformal symmetry is

preserved within this subsector. The conformal symmetry is broken as soon as we include operators

with non-zero momentum along both light-cone directions.

As before, we introduce the ‘bare’ physical operator with light-cone momenta (p+, p�) via

T
(0)
bare(p+, p� ; z, z̄) = T (0)

p+ (z) V̄ (0)
p� (z̄) (2.35)

The corresponding (1,1) form operator

T
(1,1)
bare (p+, p� ; z, z̄) =

�
@X�+ ip+@ log @X+

�
@̄X�eip+X+(z)eip�X̄�(z̄) (2.36)

defines the momentum mode of the ‘bare’ CFT stress tensor in the (x+, x�) coordinate system.

We can also obtain the physical operator for the stress tensor via a di↵erent route, by directly

starting with the stress tensor of the CFT. Since the stress tensor does not transform as a primary

operator, we need to modify the construction used in the previous section. A straightforward

calculation shows that the following operator is BRST invariant

T
(0)
bare(p+, p� ; z, z̄) = c̄

�
cT CFT(z) + @2c

�
(@X+)�1@̄X� eip+X+(z)eip�X̄�(z̄) (2.37)

The extra @2c cancels the anomalous BRST transformation law due to the conformal anomaly.

Here, for later reference, we introduced the notation  = c
24 which for now is set equal to  = 1.

The (1,1) form version of this physical operator takes the form

T
(1,1)
bare (p+, p� ; z, z̄) = T CFT

++ (z) @X+ @̄X�eip+X+(z)eip�X̄�(z̄) (2.38)

T CFT
++ (z) =

�
T CFT(z) + 2

�
X+, z

 �
(@X+)�2 (2.39)

Here
�
f, z

 
= f 000

f 0 �
3
2

�f 00

f 0
�2

denotes the Schwarzian derivative. The right-hand side of (2.38) is

now a well-behaved (1,1) primary field. On the infinite plane, its integral redues to the momentum

mode of the CFT stress tensor
Z

d2z T (1,1)
bare (p+, p� ; z, z̄) =

Z
dx+dx� T++(x

+) ei(p+x++p�x�) (2.40)

– 7 –

These are the well-known DDF operators, first discovered by DelGuidice, Divecchia and Fubini.

They satisfy the key property that the corresponding contour integrals

Ln =

I
dz T (1)

p+ (z), p+ =
n

R
(2.33)

generate the Virasoro algebra

[Ln,Lm] = (n�m)Ln+m +
c

12
(n3

� n)�nm (2.34)

with central charge c = 24. This should come as no surprise: via the Virasoro constraints (2.7)

in the light-cone gauge, the operators (2.32) and (2.33) are identified with the stress tensor and

Virasoro generators of the c = 24 transverse CFT. This identification plays a key role in the no

ghost theorem, the statement that the physical Hilbert space contains only positive norm states.

In writing equation (2.33), we implicitly assumed that we could work in the purely left-moving

sector. In other words, we had to assume that the right-moving momentum P� vanishes, so that

(2.8) implies that left-moving plane waves are periodic with period 2⇡R. This restriction to the

chiral sector e↵ectively turns o↵ the T T̄ interaction. This explains why conformal symmetry is

preserved within this subsector. The conformal symmetry is broken as soon as we include operators

with non-zero momentum along both light-cone directions.

As before, we introduce the ‘bare’ physical operator with light-cone momenta (p+, p�) via

T
(0)
bare(p+, p� ; z, z̄) = T (0)

p+ (z) V̄ (0)
p� (z̄) (2.35)

The corresponding (1,1) form operator

T
(1,1)
bare (p+, p� ; z, z̄) =

�
@X�+ ip+@ log @X+

�
@̄X�eip+X+(z)eip�X̄�(z̄) (2.36)

defines the momentum mode of the ‘bare’ CFT stress tensor in the (x+, x�) coordinate system.

We can also obtain the physical operator for the stress tensor via a di↵erent route, by directly

starting with the stress tensor of the CFT. Since the stress tensor does not transform as a primary

operator, we need to modify the construction used in the previous section. A straightforward

calculation shows that the following operator is BRST invariant

T
(0)
bare(p+, p� ; z, z̄) = c̄

�
cT CFT(z) + @2c

�
(@X+)�1@̄X� eip+X+(z)eip�X̄�(z̄) (2.37)

The extra @2c cancels the anomalous BRST transformation law due to the conformal anomaly.

Here, for later reference, we introduced the notation  = c
24 which for now is set equal to  = 1.

The (1,1) form version of this physical operator takes the form

T
(1,1)
bare (p+, p� ; z, z̄) = T CFT

++ (z) @X+ @̄X�eip+X+(z)eip�X̄�(z̄) (2.38)

T CFT
++ (z) =

�
T CFT(z) + 2

�
X+, z

 �
(@X+)�2 (2.39)

Here
�
f, z

 
= f 000

f 0 �
3
2

�f 00

f 0
�2

denotes the Schwarzian derivative. The right-hand side of (2.38) is

now a well-behaved (1,1) primary field. On the infinite plane, its integral redues to the momentum

mode of the CFT stress tensor
Z

d2z T (1,1)
bare (p+, p� ; z, z̄) =

Z
dx+dx� T++(x

+) ei(p+x++p�x�) (2.40)

– 7 –

k^



where the expectation value is defined in the 2D worldsheet theory specified by the action (2.1).

Using a BRST formalism, we give an explicit characterization and construction of the physical states

and operators in the theory. Since the scalar fields and reparametrization ghosts are described by a

free field theory, our non-critical string formulation amounts to an exact non-perturbative solution

of the T T̄ deformed theory: the deformed amplitudes are obtained in a computable way from the

correlation functions of CFT.

2 T T̄ at c = 24 as a critical string

As a warm-up we start with a quick overview of the critical case, c = 24. The general case will follow

much of the same pattern. To a general c = 24 CFT, we associate its T T̄ deformed theory by adding

two free massless scalar fields X+ = X0 +X1 and X� = X0 �X1 and a pair of reparametrization

ghosts

SQFT = SCFT +
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a @̄Xb +

Z
d2z (b@̄c+ b̄@c̄) (2.1)

with ⌘ab a flat 2D target space metric. We will assume that the spatial target space direction is

compactified to a circle X1 ⌘ X1+2⇡R and restrict to the winding number one sector. Using radial

quantization, the periodicity condition reads

X1(e
2⇡iz, e�2⇡iz̄) = X1(z, z̄) + 2⇡R. (2.2)

Here and in the following, we use natural string units, in which the dimensionful coupling of the

T T̄ deformed theory, or equivalently, the string tension of the critical string theory defined by

eqrefxpmact, is set equal to 1.

We interpret (2.1) as a gauge fixed action obtained from a covariant action with a dynamical

2D metric, after going to the conformal gauge. The action (2.1) has a nilpotent BRST symmetry

and corresponding BRST charge Qbrst = Q+ Q̄ with

Q =
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The physical content of the theory is specified by restricting the states and operators to the BRST

cohomology

Qbrst|physi = 0, |physi ' |physi + Qbrst|⇤i

⇥
Qbrst,Ophys
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= 0, Ophys ' Ophys + [Qbrst, ⇤]

(2.4)

The above four equations (2.1), (2.2), (2.3) and (2.4) provide a complete non-perturbative definition

of the T T̄ deformed CFT on a cylinder. At the level of the energy spectrum, this equivalence has

been verified in [??]. Here we will focus our attention to the construction of the physical operators

and the definition of the correlation functions. First, let us briefly present a physical argument for

why the two theories are indeed equivalent [??].
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m with p2 + h =
c

24
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Z
d2zOh(z, z̄) e
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24
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p± =

I
@X⌥, p̄± =

I
@̄X⌥ (2.22)

wirth eLn = (�)nL̄n, etc

e�⌧(�p20+R2+p1+h+h̄) (2.23)

2.2 Bare physical operators

While useful for establishing the equivalence with the T T̄ theory, the temporal gauge (2.6) is not

well suited for obtaining a well controlled description of the quantum theory. For this purpose, it

is more convenient to use the BRST formalism.

The rules of the game are simple: to determine if an operator is BRST invariant, one computes

the OPE with the BRST current, using the basic contraction rules
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z
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z
, T (z) O(0) =
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1

z
@
⌘
O(0), (2.24)
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2.1 Equivalence with T T̄

The BRST cohomology relations (2.4) formally impose the Virasoro conditions

@X+@X� + TCFT = 0 , @̄X+@̄X� + T̄CFT = 0 (2.5)

and implement gauge invariance under conformal transformations (z, z̄) ! (x+(z), x�(z̄)). We

could fix a temporal gauge, by choosing our worldsheet coordinate (x+, x�) such that

@X+ = @̄X� = 1 (2.6)

which identifies the worldsheet coordinates with the chiral halves of the target space light-cone

fields: X+(x+, x�) = x+ + X̃+(x�) and X�(x+, x�) = x� + X̃�(x+). The other halves are found

by integrating the Virasoro conditions

@+X
� + T CFT

++ = 0 , X�= x� +

Z x+

dx+T CFT
++ ,

=)

@�X
+ + T CFT

�� = 0 , X+= x+ +

Z x�

dx�T CFT
�� .

(2.7)

Equations (2.7) provide the quantum definition of the light-cone coordinate fields. The self-

consistency of this identification is well established for c = 24 via the no ghost theorem for the

critical NG string. For our context, it demonstrates that the T T̄ deformed CFT with c = 24 is a

well defined quantum theory, in which all Hilbert states have positive norm. We will use elements

of the proof of the no ghost theorem below.

Note that the periodic boundary condition (2.2) of the target space field X1 = 1
2(X

+
� X�)

implies that the lightcone coordinates x± satisfy an operator valued periodic identification

(x+, x�) ' (x++2⇡R� P�, x
�+2⇡R� P+) (2.8)

with

P+ =

I
dx+T CFT

++ , P� =

I
dx�T CFT

�� (2.9)

the total CFT lightcone momenta. This indicates that the theory in the temporal gauge is a non-

trivial interacting system. Based on the above description, it is not hard to convince oneself that

this interacting theory is indeed equivalent to the T T̄ deformed CFT. A direct way to see this is to

plug (2.7) back into the free field action (2.1). This directly reproduces the T T̄ interaction term.

S =

Z
d2z (⌘ab@X

a @̄Xb + qR̂ log(@X+@̄X�) (2.10)

T = @X+@X� + q @2log @X+, (2.11)

T̄ = @̄X+@̄X� + q @̄2log @̄X� (2.12)

⌦
Oh(x)Oh(y)

↵
(2.13)
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We would like to define correlation functions, such as the 2-point function in

position space momentum spaceor

So what are the appropriate physical observables?       Here is a first guess:

=>  Only on-shell amplitudes!   How can we obtain off-shell correlation functions?

Note that the periodic boundary condition (2.2) of the target space field X1 =
1
2(X

+
�X�) implies

that the lightcone coordinates x± satisfy an operator valued periodic identification

(x+, x�) ' (x++ 2⇡R� P�, x
�+ 2⇡R� P+) (2.18)

where

P± =

I
dx±T CFT

±± (2.19)

denote the total CFT lightcone momenta. This periodity condition implies that the temporal gauge

formulation of the non-critical string theory leads to a non-trivial interaction between the left- and right-

moving sectors: every time a right mover passes through a left mover, it gets shifted by an amount

proportional to the light-cone momentum of the other particle. Based on this and the above general

description, it is not hard to convince oneself that this interacting theory is indeed equivalent to the

T T̄ deformed CFT. A direct way to see this is to plug (2.15) back into the free field action (2.1). This

directly reproduces the T T̄ interaction term.

3 Spectrum and Partition Sum

3.1 Spectrum

While useful for establishing the equivalence with the T T̄ theory, the temporal gauge (2.16) does not

give rise to a well controlled description of the quantum theory. For this purpose, it is more convenient to

use a covariant BRST formalism. The action (2.1) has a nilpotent BRST symmetry and corresponding

nilpotent charge Qbrst = Q+ Q̄ with

Q =

I
dz

⇣
c
�
TCFT + TX +

1

2
Tgh

�⌘
(3.1)

Physical states are specified by restricting space of all states to the BRST cohomology

Qbrst|physi = 0, |physi ' |physi + Qbrst|⇤i

⇥
Qbrst,Ophys

⇤
= 0, Ophys ' Ophys + [Qbrst, ⇤]

(3.2)

defined as a BRST invariant states modulo BRST exact states. The four equations (2.1), (2.2), (2.3),

(3.1) and (3.2) provide a complete non-perturbative definition of the T T̄ deformed CFT on a cylinder.

The space of physical states takes the same form as for the critical string, with only some minor

modification. In particular, the non-trivial BRST cohomology is found in the Hilbert space sector

with ghost number �1. Using radial quantization, the �1 ghost vacuum is defined by acting with the

product c(0)c̄(0) of the left- and right c-ghosts on the SL(2,R) invariant vacuum.

Let O�(z, z̄) with � = (�L,�R) denote a CFT primary operator with left and right conformal

dimension �L and �R. We can associate to O� a physical state with given energy momentum p via

(here |0i denotes the SL(2,R) invariant vacuum)

���, p
↵
= c(0)c̄(0)O�(0)e

ip ·X(0)
��0

↵
, (3.3)
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Here are a concrete proposal:  use boundary states!           `D-branes’
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well suited for obtaining a well controlled description of the quantum theory. For this purpose, it

is more convenient to use the BRST formalism.

The rules of the game are simple: to determine if an operator is BRST invariant, one computes

the OPE with the BRST current, using the basic contraction rules
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Ishibashi states w/ fixed momentum … 



To compute the matrix element of a cross-cap operator, 
it is useful to consider the CFT on the `Schottky double’:

chiral

h" Φ

3"""""""4""" h"","h""" !!!!!!! !!!!!!!

1"""""""2""" h"","h""" !!!!!!! !!!!!!!e , J

e , J’,

Oh
~ h"

1"""""""2""" h"","h""" !!!!!!! 1"""""""2""" h"","h""" !!!!!!!
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The correlation function is now obtained by integrating the unfolded chiral correlation function over

the real modulus ⇢
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with �L,R = 1
2(� ± J/R), etc. Here Ph is the projection operator onto the sector spanned by all

descendents of |hi.We observe that the deformed correlation functions looks like a CFT amplitude

with a cross cap with finite size ⇢, smeared by a dressing factor f(⇢) = ⇢k1·k2 (1 � ⇢)k1·k3 . In the

above computation, we ignored any possible extra factors due to the presence of the extra background

charge term R log(@X+@X�). Our working rule is that the e↵ect of this extra term is taken into

account via a shift in the conformal dimension of the momentum vertex operators, so that the on-shell

condition ensures that the total physical vertex operators are proper dimension (1,1) conformal fields.

This prescription is certainly accurate in the heavy regime � � c/24. The prefactor N in (5.9) is a

normalization factor, which is chosen such that the identity operator has matrix element equal to 1.
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Fig. 5: The string interaction relating a one string to a two string state. This
interaction occurs when two eigenvalues XI and XJ coincide, we enter a phase

where an unbroken U(2) symmetry is restored.

Concretely, we will now exhibit a smooth and single-valued Yang-Mills configuration

that describes the local splitting or joining of one or two matrix strings. Ultimately, we

will be interested in obtaining global classical solutions to the SYM equations of motion

that minimize the Yang-Mills action for given asymptotic conditions on the matrix fields

X , as written in eqns (1.2) and (1.3) in the Introduction.

4.1. SYM Solution near Interaction Point

It seems reasonable to assume that, at least in the immediate neighborhood of the

interaction point, these minimal action configurations of the SYM model are described by

supersymmetric configurations. Hence, instead of trying to solve the full Yang-Mills equa-

tions, we will restrict ourselves to the special class of solutions satisfying a dimensionally

reduced version of the self-duality equations from four to two dimensions. We will choose

to work with variables

X =
1

2
(X1 + iX2) , X =

1

2
(X1 − iX2) , (4.1)

setting the remaining X i’s to zero. The self-duality conditions then become

Fww = − i

g2s
[X,X ]

DwX = 0

DwX = 0 .

(4.2)

The above equations are most conveniently analyzed by writing

Aw(w,w) = −iG∂wG
−1

Aw(w,w) = i(∂wG
−1

)G
(4.3)
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Intuitively, we expect that for large R2, the dressing factor is a sharply peaked function, with a

maximum ⇢c(R2) that approaches ⇢c ! 0 in the limit R2
! 1. This will ensure the correspondence

with the undeformed theory. The exponents in the dressing prefactor f(⇢) in (5.9) are given by
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0 +
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�!
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Hence for large R2, f(⇢) is indeed sharply peaked at

⇢c '
k1 · k2
k1 · k3

'
M

R2
(5.11)

In this regime, the 3-point function of the T T̄ theory is well approximated by the saddle point value

of the integrand, given by the chiral 4-point function (given by the product of the OPE coe�cient c123
times the conformal block) of the undeformed CFT on the Schottky double with modular parameter ⇢c
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To proceed further, we need to know more about the explicit form of the conformal block of four

heavy operators with scale dimension � > c/24. Such an expression is not known, but one can make a

natural guess in the limit of large central charge [HV], based on the following three observations:

1) At large c, a CFT amplitude with only heavy operators selects a special coordinate system (Z, Z̄),

via the condition that the expectation value of the stress-energy tensor vanishes: hT (Z)i = hT̄ (Z̄)i = 0.

Such a ‘uniformizing coordinate system’ always exists, thanks to the anomalous transformation property

of T (z). The behavior hT (z)i = �/z2 near a heavy operator with dimension � is uniformized by

Z(z) = zir+ with r2+ =
24�

c
� 1 =

12M

c
. (5.13)

The (Z, Z̄) coordinates are multivalued: under z ! e2⇡iz, they undergo a monodromy specified by the

same hyperbolic SL(2,R) elements that characterize the corresponding BTZ geometry.

2) The semi-classical Virasoro conformal blocks reduce to global conformal blocks in the uniformizing

coordinate system [fitz]. From the commutator [Ln, L�n] = 2nL0 + c
12n(n

2
� 1) we see that the

norm of descendent states grows linearly in c, except for ‘global descendents’ of the form Lk
�1|hi.

The uniformizing coordinates are designed so that the L�n do not produce any other large factors

proportional to �. As argued in [fitz], at large c we may thus replace the projection operator Pk onto

Virasoro descendents by a more restrictive projection onto global descendents only.

3) Global conformal blocks satisfy a di↵erential equation of the form L2
totFh(z, z̄) = 2m2

hFh(z, z̄) with

L2
tot = L2 + L̄2 the Casimir of the global conformal algebra acting on the intermediate channel. The

solution factorizes into chiral global conformal blocks given in terms of the hypergeometric function via

 h = zh1F2
�
h+�13, h+�24, 2h; z

�
, with �ij = �i��j . Taking into account that in the (Z, Z̄) system,
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Figure 1. The local operator eO in the deformed theory creates a finite size cross cap. The matrix element
between energy-momentum eigen states can be computed by mapping to the Schottky double. The energy and
momentum are encoded via four target space momenta given in equation (5.6).

The rest of the computation follows a familiar set of steps. As indicated in Figure 1, the cylinder

with a cross cap insertion can be unfolded into a doubled geometry, called the Schottky double, consist-

ing of two cylinders connects by a tube. The original cross cap geometry is obtained by modding out an

orientation reversing Z2 identification. The doubled geometry has one real complex structure modulus,

which can be identified with the real cross ratio ⇢ of the four punctured sphere with a Z2 involution.

The energy and momentum of the initial and final state reorganize them selves on the Schottky double

into four chiral space-time momenta ki
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The correlation function is now obtained by integrating the unfolded chiral correlation function over

the real modulus ⇢
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with �L,R = 1
2(� ± J/R), etc. Here Ph is the projection operator onto the sector spanned by all

descendents of |hi.We observe that the deformed correlation functions looks like a CFT amplitude

with a cross cap with finite size ⇢, smeared by a dressing factor f(⇢) = ⇢k1·k2 (1 � ⇢)k1·k3 . In the

above computation, we ignored any possible extra factors due to the presence of the extra background

charge term R log(@X+@X�). Our working rule is that the e↵ect of this extra term is taken into

account via a shift in the conformal dimension of the momentum vertex operators, so that the on-shell

condition ensures that the total physical vertex operators are proper dimension (1,1) conformal fields.

This prescription is certainly accurate in the heavy regime � � c/24. The prefactor N in (5.9) is a

normalization factor, which is chosen such that the identity operator has matrix element equal to 1.
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with �L,R = 1
2(� ± J/R), etc. Here Ph is the projection operator onto the sector spanned by all

descendents of |hi.We observe that the deformed correlation functions looks like a CFT amplitude

with a cross cap with finite size ⇢, smeared by a dressing factor f(⇢) = ⇢k1·k2 (1 � ⇢)k1·k3 . In the

above computation, we ignored any possible extra factors due to the presence of the extra background

charge term R log(@X+@X�). Our working rule is that the e↵ect of this extra term is taken into

account via a shift in the conformal dimension of the momentum vertex operators, so that the on-shell

condition ensures that the total physical vertex operators are proper dimension (1,1) conformal fields.

This prescription is certainly accurate in the heavy regime � � c/24. The prefactor N in (5.9) is a

normalization factor, which is chosen such that the identity operator has matrix element equal to 1.

– 15 –
0.05 0.10 0.15 0.20

50

100

150

200



à identifies matrix element with square root of a conformal block!

h" Φ

3"""""""4""" h"","h""" !!!!!!! !!!!!!!

1"""""""2""" h"","h""" !!!!!!! !!!!!!!e , J

e , J’,

Oh
~ h"

1"""""""2""" h"","h""" !!!!!!! 1"""""""2""" h"","h""" !!!!!!!

3"""""""4""" h"","h""" !!!!!!! 3"""""""4""" h"","h""" !!!!!!!

k1

k2 k3

k4

h

Figure 1. The local operator eO in the deformed theory creates a finite size cross cap. The matrix element
between energy-momentum eigen states can be computed by mapping to the Schottky double. The energy and
momentum are encoded via four target space momenta given in equation (5.6).

The rest of the computation follows a familiar set of steps. As indicated in Figure 1, the cylinder

with a cross cap insertion can be unfolded into a doubled geometry, called the Schottky double, consist-

ing of two cylinders connects by a tube. The original cross cap geometry is obtained by modding out an

orientation reversing Z2 identification. The doubled geometry has one real complex structure modulus,

which can be identified with the real cross ratio ⇢ of the four punctured sphere with a Z2 involution.

The energy and momentum of the initial and final state reorganize them selves on the Schottky double

into four chiral space-time momenta ki

k1 = pµ1R =
⇣
E
0

R
+ R,

J 0

R
�R

⌘
, �k4 = pµ1L =

⇣
E
0

R
+ R,

J 0

R
+R

⌘
(5.6)

�k2 = pµ2R =
⇣
E

R
+ R,

J

R
+R

⌘
, k3 = pµ2L =

⇣
E

R
+ R,

J

R
�R

⌘
(5.7)

The correlation function is now obtained by integrating the unfolded chiral correlation function over

the real modulus ⇢

hE
0, J 0

| eOh|E, Ji=

Z
d⇢

⌦
eik1X(⇢)eik2X(0)eik2X(1)eik4X(1)

↵ ⌦
V�0

L
(⇢)V�L

(0)PhV�R
(1)V�0

R
(1)

↵

(5.8)

= N

Z
d⇢ ⇢k1·k2 (1� ⇢)k1·k3

⌦
V�0

L
(⇢)V�L

(0)PhV�R
(1)V�0

R
(1)

↵

with �L,R = 1
2(� ± J/R), etc. Here Ph is the projection operator onto the sector spanned by all

descendents of |hi.We observe that the deformed correlation functions looks like a CFT amplitude

with a cross cap with finite size ⇢, smeared by a dressing factor f(⇢) = ⇢k1·k2 (1 � ⇢)k1·k3 . In the

above computation, we ignored any possible extra factors due to the presence of the extra background

charge term R log(@X+@X�). Our working rule is that the e↵ect of this extra term is taken into
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Intuitively, we expect that for large R2, the dressing factor is a sharply peaked function, with a

maximum ⇢c(R2) that approaches ⇢c ! 0 in the limit R2
! 1. This will ensure the correspondence

with the undeformed theory. The exponents in the dressing prefactor f(⇢) in (5.9) are given by
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In this regime, the 3-point function of the T T̄ theory is well approximated by the saddle point value

of the integrand, given by the chiral 4-point function (given by the product of the OPE coe�cient c123
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To proceed further, we need to know more about the explicit form of the conformal block of four

heavy operators with scale dimension � > c/24. Such an expression is not known, but one can make a

natural guess in the limit of large central charge [HV], based on the following three observations:

1) At large c, a CFT amplitude with only heavy operators selects a special coordinate system (Z, Z̄),

via the condition that the expectation value of the stress-energy tensor vanishes: hT (Z)i = hT̄ (Z̄)i = 0.

Such a ‘uniformizing coordinate system’ always exists, thanks to the anomalous transformation property

of T (z). The behavior hT (z)i = �/z2 near a heavy operator with dimension � is uniformized by

Z(z) = zir+ with r2+ =
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The (Z, Z̄) coordinates are multivalued: under z ! e2⇡iz, they undergo a monodromy specified by the

same hyperbolic SL(2,R) elements that characterize the corresponding BTZ geometry.

2) The semi-classical Virasoro conformal blocks reduce to global conformal blocks in the uniformizing

coordinate system [fitz]. From the commutator [Ln, L�n] = 2nL0 + c
12n(n

2
� 1) we see that the

norm of descendent states grows linearly in c, except for ‘global descendents’ of the form Lk
�1|hi.

The uniformizing coordinates are designed so that the L�n do not produce any other large factors

proportional to �. As argued in [fitz], at large c we may thus replace the projection operator Pk onto
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It is convenient to introduce polar coordinates (r, t, f) and write

We conjecture that the two are in fact equal:

We wish to compare this matrix element with the classical mode function

in the dual BTZ black hole.

3

BTZ holonomy (8). We conclude that the Teichmüller
space of the hyperbolic cylinder with a cross-cap (shown
in fig 1) is isomorphic to the BTZ black hole space-time.
This is our first piece of evidence that, at large c, the bulk
field �h(g) lives on the classical black hole background.

To provide more quantitative support for our proposal,
let us set out to compute the amplitude (7) and compare
the answer with the bulk mode that solves the wave equa-
tion (2) in the BTZ geometry. This bulk mode takes the
form f

!`
(t,', ⇢) = e�i!tei`'f

!`
(⇢) with

f
!`
(⇢) = ⇢h(1�⇢)

i!
2r+

2F1

�
h+ i(!+`)

4r+
, h+ i(!�`)

4r+
, 2h ; ⇢

�
(12)

Here 2F1(a, b, c ; z) denotes the ordinary hypergeometric
function and ⇢ = r2+/r

2 parametrizes the radial coordi-
nate. In fact, the mode function constitutes an SL(2,R)
matrix element, f

!`
(g) = hh, i(!+`)

4r+
|g |h, i(!�`)

4r+
i, which

evidently satisfies the free bulk wave equation (2).

To compute the CFT matrix element (7), it is con-
venient to start in Euclidean signature, define �h(g) as
the operator that pokes a hole in the 2D Euclidean space
time, and then Wick rotate back to Lorentzian signature.
Moreover, we will choose to work in the uniformizing
coordinate system (Z, Z̄) introduced in (10)-(11). This
choice will greatly facilitate our analysis.

A CFT amplitude on a surface with a cross-cap is most
conveniently analyzed by introducing the so-called Schot-
tky double, as shown in fig 2. In our case, ⌃ is a cylinder
with a circular hole, and its Schottky double ⌃̃ is two
cylinders connected via a narrow bridge. ⌃̃ admits an
(orientation reversing) involution that identifies diamet-
ric opposite points on the circular boundary of ⌃. The
reflection symmetry restricts its cross ratio Z to be real

Z = Z̄ ⌘ ⇢.

A sphere with two punctures and a cross-cap has one
single real modulus.

Since the boundary reflects left-moving into right-
moving modes, the involution interchanges the two chiral
halves of the CFT. Moreover, thanks to the projection
onto the conformal sector h in the intermediate channel,
the CFT amplitude on the double ⌃̃ takes the form of a
single non-chiral conformal block Fh

⇥
1 2
3 4

⇤
(Z, Z̄), which in

turn factorizes into the product of two chiral blocks:

Fh

⇥
1 2
3 4

⇤
(Z, Z̄) =

�� h

⇥
1 2
3 4

⇤
(Z)

��2. (13)

Here we absorbed the product of OPE coe�cients
C12hCh34 into the normalization of the conformal block.
The Z-dependence of the conformal blocks is universal
and completely fixed by conformal invariance.

The amplitude �h

⇥
1 2
3 4

⇤
(g) is obtained by taking the

h"Φ

3"""""""4"""h"","h"""!!!!!!!!!!!!!!

1"""""""2"""h"","h"""!!!!!!!!!!!!!!

h"

1"""""""2"""h"","h"""!!!!!!!1"""""""2"""h"","h"""!!!!!!!

3"""""""4"""h"","h"""!!!!!!!3"""""""4"""h"","h"""!!!!!!!

FIG. 2: The CFT amplitude with the insertion of an Ishibashi
boundary state (left) and its Schottky double (right). Due to
the projection onto the conformal sector h in the intermediate
channel, the amplitude is given by a single conformal block.

square root of the amplitude on the double ⌃̃.

�h

⇥
1 2
3 4

⇤
(⇢) =

⇣
Fh

⇥
1 2
3 4

⇤
(⇢, ⇢)

⌘1/2
(14)

So our task is: (i) compute the conformal block, (ii) take
the square root, (iii) compare the result with the mode
function (12) in the BTZ black hole background (c.f. [7]).

Virasoro conformal blocks are uniquely determined
by the conformal Ward identity. An explicit expres-
sion is not available yet, however, though exact or semi-
classical properties are known. Known exact results are
(a) Zamolodchikov’s recursion formula [8] relating Vi-
rasoro and global conformal blocks and (b) the modu-
lar ‘fusion’ matrices, obtained by Ponsot and Teschner
from Liouville CFT and quantum Teichmuller theory [9].
Semi-classical expressions have recently been obtained in
[10]. Unfortunately, none of the known results allow us
to read o↵ the specific answer that we need.

Given this state of a↵airs, it’s a reasonable strategy at
this point to invert the sequence of step (i)-(iii), and first
deduce the desired expression for the 2D conformal block
that we need in order to find a precise match

�h

⇥
1 2
3 4

⇤
(⇢) = f

!`
(⇢) (15)

between the CFT amplitude and the bulk mode function.
Imposing this match, we deduce that the conformal block
should take the following form

 h

⇥
1 2
3 4

⇤
(Z) = Zh

2F1

�
h+ i

2r+
h13, h+

i

2r+
h24, 2h ;Z

�
(16)

To see this, note that taking the chiral conjugate of the
conformal block  h

⇥
1 2
3 4

⇤
(Z) amounts flipping the sign of

i

2r+
h13 and i

2r+
h24 inside the argument of the hyper-

geometric function. Then, using the standard identity

2F1(a, b, c ;Z) = (1�Z)c�a�b
2F1(c� a, c� b, c ;Z), direct

inspection shows that the CFT amplitude (13)-(14) re-
produces the expression (12).

h""""" 1"""""""2"""h"","h"""|""""""" > 3"""""""4"""h""","h"""< |""""""" Φ    

Figure 1: In a semi-classical treatment, the matrix element (7) equals the 2D
Liouville action associated to a hyperpoblic cylinder with a single hole. The
moduli space of this hyperbolic surface is isomorphic to the BTZ black hole
space-time.

⌦
h3,h4

���h(g)
��h1,h2

↵
'

D
Oh4(0)Oh3(1) Ph Oh2(Z)Oh1(1)

E

chiral

One can always find local coordinates (Z, Z̄) such that

⌦
T (Z)

↵
=

⌦
T̄ (Z̄)

↵
= 0. (10)

We call (Z, Z̄) the ‘uniformizing coordinate system’. It associates to the
amplitude a constant curvature metric ds2 = e�dzdz̄ = dZdZ̄

(Z�Z̄)2
with c

6

⌦
T
↵
=

�
1
2(@�)

2 + @2�.

For our matrix element (7) we have
⌦
T (z)

↵
= �/z2. This is uniformized

by

Z(z) = zir+ with r2+ = 24�
c � 1. (11)

The coordinates (Z, Z̄) are multivalued: under a full rotation z ! e2⇡iz, they
undergo a monodromy. The corresponding 2-D constant curvature metric
describes a hyperbolic cylinder.

When we transport �h(g) around the heavy operator O�(0), the group
element g does not come back to itself, but undergoes the BTZ holonomy
(8). We conclude that the Teichmüller space of the hyperbolic cylinder with
one hole (as shown in fig 1) is isomorphic to the BTZ black hole space-time.

This bulk mode takes the form f!`(t,', ⇢) = e�i!tei`'f!`(⇢) with

f!`(⇢) = ⇢h(1�⇢)
i!
2r+

2F1

�
h+ i(!+`)

2r+
, h+ i(!�`)

2r+
, 2h ; ⇢

�
(12)

Here ⇢ = r2+/r
2 parametrizes the radial coordinate.
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