TT̄ deformed CFT as a non-critical string

Herman Verlinde
Workshop on TTbar deformations
LPTHE $06 / 03 / 2019$

Based on joint work with:
Princeton University

$1+1$ CFT with a $\mathrm{T} \overline{\mathrm{T}}$ deformation

$$
S=S_{\mathrm{CFT}}-\mu \int d x d \tau T \bar{T}
$$

[1] F. A. Smirnov and A. B. Zamolodchikov, "On space of integrable quantum field theories," 1608.05499.
[2] A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, "T \bar{T}-deformed 2D Quantum Field Theories," JHEP 10 (2016) 112, 1608.05534.
[3] S. Dubovsky, R. Flauger, and V. Gorbenko, "Solving the Simplest Theory of Quantum Gravity," JHEP 09 (2012) 133, 1205.6805.
$T \bar{T}$ Energy Spectrum $=$ Spectrum of Black Hole in a Box

$$
E(R)=\frac{R}{4 \mu}\left[1-\sqrt{1-\frac{\mu M}{R^{2}}+\frac{\mu^{2} J^{2}}{4 R^{4}}}\right] \quad \quad \mu=\frac{16 \pi G}{r_{c}^{2}}
$$

[18] J. D. Brown, J. Creighton, and R. B. Mann, "Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes," Phys. Rev. D50 (1994) 6394-6403, gr-qc/9405007.

Total energy of a black hole with radial cut-off

$T \bar{T}=$ Equivalent to Nambu-Goto string theory

$$
S_{\mathrm{QFT}}=S_{\mathrm{CFT}}+\frac{1}{\mu} \int d^{2} x \partial_{\mathrm{v}} X^{+} \partial_{\mathrm{u}} X^{-}
$$

$$
\begin{gathered}
-\partial_{u} X^{+} \partial_{u} X^{-}+\mu T_{u u}^{\mathrm{CFT}}=0, \\
\partial_{+} X^{+}=\partial_{-} X^{-}=1
\end{gathered}
$$

$$
X_{1}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=X_{1}(z, \bar{z})+2 \pi R .
$$

Target space $=$ cylinder

$$
\begin{aligned}
& X^{-}=x^{-}+\int^{x^{+}} d x^{+} T_{++}^{\mathrm{CFT}}, \\
& X^{+}=x^{+}+\int^{x^{-}} d x^{-} T_{--}^{\mathrm{CFT}} .
\end{aligned}
$$

LC gauge coordinates have operator valued periodicity:

$$
\begin{aligned}
& \left(x^{+}, x^{-}\right) \simeq\left(x^{+}+2 \pi R-P_{-}, x^{-}+2 \pi R-P_{+}\right) \\
& P_{+}=\oint d x^{+} T_{++}^{\mathrm{CFT}}, \quad P_{-}=\oint d x^{-} T_{--}^{\mathrm{CFT}}
\end{aligned}
$$

$T \bar{T}$ for general $c=$ non-critical string with worldsheet action

$$
\begin{aligned}
S & =\int d^{2} z\left(\frac{1}{\mu} \partial X^{-} \bar{\partial} X^{+}+\kappa \hat{R} \log \left(\partial X^{+} \bar{\partial} X^{-}\right)\right. \\
& =>\text {preserves 2D Poincare symmetry }
\end{aligned}
$$

Stress tensor gets modified to

$$
\begin{aligned}
& T=\partial X^{+} \partial X^{-}+\kappa \partial^{2} \log \partial X^{+} \\
& \bar{T}=\bar{\partial} X^{+} \bar{\partial} X^{-}+\kappa \bar{\partial}^{2} \log \bar{\partial} X^{-}
\end{aligned}
$$

satisfies Virasoro algebra with $c=24(1+\kappa)$

An equivalent formulation starts from the dilaton gravity action

$$
S=\int d^{2} x \sqrt{g}(\Phi R+\mu)+\kappa S_{L}(g)+S_{C F T}
$$

Classical solution can be parametrized in terms of free fields X^{+}and X^{-}via:

$$
\begin{gathered}
d s^{2}=\partial_{u} X^{+} \partial_{v} X^{-} d u d v \\
\Phi=-\mu X^{+} X^{-}+\omega^{+}(u)+\omega^{-}(v) \\
\partial_{u} \omega^{+}=\widetilde{X}^{-} \partial_{u} X^{+}-\frac{\hat{\kappa}}{2} \partial_{u} \log \left(\partial_{u} X^{+}\right)
\end{gathered}
$$

Spectrum

$$
\begin{gathered}
S_{X}=\int d^{2} z\left(G_{a b}+B_{a b}\right) \partial X^{a} \bar{\partial} X^{b} \\
p_{0 L}=p_{0 R}=\frac{\mathcal{E}}{2}+\frac{B R}{2}, \quad p_{1 L}=\frac{J}{2 R}+\frac{R}{2}, \quad p_{1 R}=\frac{J}{2 R}-\frac{R}{2}
\end{gathered}
$$

$$
-2 p_{0}^{2}+p_{1 L}^{2}+p_{1 R}^{2}+\Delta_{L}+\Delta_{R}-2 \kappa-2=0
$$

$$
\Delta_{R}-\Delta_{L}=p_{1 L}^{2}-p_{1 R}^{2}=J
$$

$$
\mathcal{E}=R\left(-B+\sqrt{1+\frac{2 E}{R}+\frac{J^{2}}{R^{4}}}\right)
$$

$$
\begin{aligned}
-\kappa \partial^{2} \log \left(\partial X^{+}(z)\right) e^{i p \cdot X(0)} & =-\kappa \partial^{2}: \log \left(\frac{p_{-}}{z}+\partial X^{+}(z)\right) e^{i p \cdot X(0)}: \\
& \simeq-\frac{\kappa}{z^{2}} e^{i p \cdot X(0)}+\text { regular }
\end{aligned}
$$

Partition function

$$
Z(\alpha, \beta)=\sum_{n} e^{i \alpha J_{n}-\beta \mathcal{E}_{n}}
$$

$$
\Lambda=2 \pi R \beta=4 \pi^{2} R^{2} \sigma_{2}
$$

$$
\begin{aligned}
Z(\sigma, \bar{\sigma}, \lambda) & =\frac{\sigma_{2}}{\pi \lambda} \int_{\mathbf{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} \sum_{w} e^{-S_{\mathrm{cl}}(\Lambda, \sigma, \tau, w)} Z_{\mathrm{CFT}}(\tau, \bar{\tau}) \\
& =\frac{\sigma_{2}}{\pi \lambda} \int_{\mathbf{H}} \frac{d^{2} \tau}{\tau_{2}^{2}} \exp \left(-\frac{\Lambda}{\tau_{2} \sigma_{2}}|\sigma-\tau|^{2}\right) Z_{\mathrm{CFT}}(\tau, \bar{\tau})
\end{aligned}
$$

$$
(\sigma, \Lambda, \lambda) \rightarrow\left(\frac{a \sigma+b}{c \sigma+d}, \Lambda, \frac{\lambda}{|c \sigma+d|^{2}}\right)
$$

Target space $=$ cylinder

$$
X_{1}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=X_{1}(z, \bar{z})+2 \pi R
$$

BRST charge

$$
Q=\oint d z\left(c\left(T_{\mathrm{CFT}}+T_{X}+\frac{1}{2} T_{\mathrm{gh}}\right)\right)
$$

Physical states $=$ BRST cohomology

$$
\left.\left.\begin{array}{rlrl}
\left.Q_{\text {brst }} \mid \text { phys }\right\rangle & =0, & & \mid \text { phys }\rangle
\end{array}\right) \text { |phys }\right\rangle+Q_{\text {brst }}|*\rangle,
$$

How do we recover the stress-tensor?

$$
\mathcal{L}_{n}=\oint d z\left(\partial X^{-}+\hat{\kappa} p_{+} \partial \log \partial X^{+}\right) e^{i p_{+} X^{+}(z)} \quad \quad p_{+}=\frac{n}{R}
$$

These are a generalization of the DDF operators of critical string theory.
They satisfy theVirasoro algebra with central charge c

$$
\left[\mathcal{L}_{n}, \mathcal{L}_{m}\right]=(n-m) \mathcal{L}_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n m}
$$

and can thus be identified with the stress-tensor of the deformed CFT.
This is the key result used in the old proof of the no ghost theorem.

Target space $=$ cylinder

$$
X_{1}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=X_{1}(z, \bar{z})+2 \pi R
$$

BRST charge

$$
Q=\oint d z\left(c\left(T_{\mathrm{CFT}}+T_{X}+\frac{1}{2} T_{\mathrm{gh}}\right)\right)
$$

Physical states $=$ BRST cohomology
$Q_{\text {brst }} \mid$ phys $\rangle=0, \quad \mid$ phys $\rangle \simeq \mid$ phys $\rangle+Q_{\text {brst }}|*\rangle$
$\left[Q_{\text {brst }}, \mathcal{O}_{\text {phys }}\right]=0$,

$$
\mathcal{O}_{\text {phys }} \simeq \mathcal{O}_{\text {phys }}+\left[Q_{\text {brst }}, *\right]
$$

We would like to define correlation functions, such as the 2-point function in

$$
\begin{array}{ccc}
\left\langle\hat{\mathcal{O}}_{h}(x) \hat{\mathcal{O}}_{h}(y)\right\rangle & & \left\langle\hat{\mathcal{O}}_{h}(p) \hat{\mathcal{O}}_{h}(-p)\right\rangle \\
\text { position space } & \text { or } & \text { momentum space }
\end{array}
$$

So what are the appropriate physical observables? Here is a first guess:

\[

\]

=> Only on-shell amplitudes! How can we obtain off-shell correlation functions?

Here are a concrete proposal: use boundary states!
`D-branes’
Ishibashi states w/ fixed momentum ...

$$
\begin{gathered}
\left.\left.\left.\left.\left.\left.\widehat{\mathcal{O}}_{h}(p)|0\rangle=\| h\right\rangle\right\rangle_{\mathrm{cft}} \| p\right\rangle\right\rangle_{X} \| 0\right\rangle\right\rangle_{\mathrm{gh}} \\
\left.\left.\left.\left.\left(L_{n}-\bar{L}_{-n}\right) \| h\right\rangle_{\mathrm{cft}}=\left(L_{n}^{X}-\bar{L}_{-n}^{X}\right) \| p\right\rangle_{X}=\left(c_{n}-\bar{c}_{-n}\right) \| 0\right\rangle\right\rangle_{\mathrm{gh}}=0
\end{gathered}
$$

... or cross cap states:

$$
\left.\left.\left.\left.\left(L_{n}-\widetilde{L}_{-n}\right) \| h\right\rangle_{\otimes}=\left(L_{n}^{X}-\widetilde{L}_{-n}^{X}\right) \| p\right\rangle_{\otimes}=\left(c_{n}-\widetilde{c}_{-n}\right) \| 0\right\rangle\right\rangle_{\otimes}=0
$$

To compute the matrix element of a cross-cap operator, it is useful to consider the CFT on the 'Schottky double':

$$
\begin{aligned}
\left\langle\mathcal{E}^{\prime}, J^{\prime}\right| \widetilde{\mathcal{O}}_{h}|\mathcal{E}, J\rangle & =\int d \rho\left\langle e^{i k_{1} X(\rho)} e^{i k_{2} X(0)} e^{i k_{2} X(1)} e^{i k_{4} X(\infty)}\right\rangle\left\langle V_{\Delta_{L}^{\prime}}(\rho) V_{\Delta_{L}}(0) \mathrm{P}_{h} V_{\Delta_{R}}(1) V_{\Delta_{R}^{\prime}}(\infty)\right\rangle \\
& =\mathcal{N} \int d \rho \rho^{k_{1} \cdot k_{2}}(1-\rho)^{k_{1} \cdot k_{3}}\left\langle V_{\Delta_{L}^{\prime}}(\rho) V_{\Delta_{L}}(0) \mathrm{P}_{h} V_{\Delta_{R}}(1) V_{\Delta_{R}^{\prime}}(\infty)\right\rangle \quad \text { chiral }
\end{aligned}
$$

$$
\left\langle\mathcal{E}^{\prime}, J^{\prime}\right| \widetilde{\mathcal{O}}_{h}|\mathcal{E}, J\rangle=\mathcal{N} \int d \rho \rho^{k_{1} \cdot k_{2}}(1-\rho)^{k_{1} \cdot k_{3}}\left\langle V_{\Delta_{L}^{\prime}}(\rho) V_{\Delta_{L}}(0) \mathrm{P}_{h} V_{\Delta_{R}}(1) V_{\Delta_{R}^{\prime}}(\infty)\right\rangle
$$

$$
\left\langle\mathcal{E}^{\prime}, J^{\prime}\right| \widetilde{\mathcal{O}}_{h}|\mathcal{E}, J\rangle=\mathcal{N} \int d \rho \rho^{k_{1} \cdot k_{2}}(1-\rho)^{k_{1} \cdot k_{3}}\left\langle V_{\Delta_{L}^{\prime}}(\rho) V_{\Delta_{L}}(0) \mathrm{P}_{h} V_{\Delta_{R}}(1) V_{\Delta_{R}^{\prime}}(\infty)\right\rangle
$$

$$
\begin{aligned}
& k_{1} \cdot k_{2}=\mathcal{E}+\mathcal{E}^{\prime}+\frac{\mathcal{E E}^{\prime}}{R^{2}} \quad \underset{R \text { large }}{\longrightarrow} 2 M \\
& k_{1} \cdot k_{3}=2 R^{2}+\mathcal{E}+\mathcal{E}^{\prime}+\frac{\mathcal{E E}^{\prime}}{R^{2}} \underset{R \text { large }}{\longrightarrow} 2 R^{2}
\end{aligned}
$$

$$
\left\langle\mathcal{E}^{\prime}, J^{\prime}\right| \widetilde{\mathcal{O}}_{h}|\mathcal{E}, J\rangle \simeq\left\langle V_{\Delta_{L}^{\prime}}\left(\rho_{c}\right) V_{\Delta_{L}}(0) \mathrm{P}_{h} V_{\Delta_{R}}(1) V_{\Delta_{R}^{\prime}}(\infty)\right\rangle
$$

\rightarrow identifies matrix element with square root of a conformal block!

It is convenient to introduce polar coordinates (ρ, t, ϕ) and write

$$
f_{\omega \ell}(t, \varphi, \rho)=e^{-i \omega t} e^{i \ell \varphi} f_{\omega \ell}(\rho)
$$

We wish to compare this matrix element with the classical mode function

$$
f_{\omega \ell}(\rho)=\rho^{h}(1-\rho)^{\frac{i \omega}{2 r_{+}}} F_{2}\left(h+\frac{i(\omega+\ell)}{2 r_{+}}, h+\frac{i(\omega-\ell)}{2 r_{+}}, 2 h ; \rho\right)
$$

in the dual BTZ black hole. We conjecture that the two are in fact equal:

