Talk 5.3

Determination of ²²⁶Ra/²³⁸U and ²²⁸Ra/²³²Th disequilibrium in surface soils from HBRA, Odisha, India and its radiological implications

<u>Nimelan VEERASAMY^{1,2}*,</u> Sarat Kumar SAHOO³, Kazumasa INOUE¹, Sharayu KASAR³, Thennaarassan Natarajan¹, Masahiro FUKUSHI¹

¹Graduate school of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan

²Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae,Obuchi,Rokkasho-mura, Kamikitagun,Aomori-ken, 039-3212, Japan

³Environmental Radionuclides Research Group, National Institutes for Quantum and Radiological Sciences and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan

Email*: v.nimelan@ies.or.jp; nimelanveerasamy@gmail.com

Naturally occurring radionuclides of terrestrial origin are ubiquitous in the Earth's crust. The radionuclides which are responsible for the enhanced natural background radioactivity are ²³⁸U, ²³²Th and their decay products. Therefore, it is necessary to monitor the environmental behavior of the naturally occurring radionuclides and radiation patterns in the HBRAs to increase awareness with public health risks. Radiological investigations have been carried out in the eastern coastal area of Odisha, India to measure gamma dose rate and natural radionuclide concentration in selected surface soil samples. ²³⁸U and ²³²Th were measured using inductively coupled plasma mass spectrometry (ICP-MS) and high purity germanium (HPGe) gamma spectroscopy was used for ²²⁶Ra, ²²⁸Ra and ⁴⁰K. The high concentration of ²³²Th in soil increased the absorbed dose rate in air to the maximum of 748 nGy/h. The ratios of ²²⁶Ra/²³⁸U and ²²⁸Ra/²³²Th in soil at radioactive secular equilibrium are 1. In this study ²²⁶Ra/²³⁸U and ²²⁸Ra/²³²Th ratios ranged from 2.9 to 5.6 and 0.8 to 2 respectively. The ratios of ²²⁸Ra/²³²Th in soil show radioactive secular equilibrium, whereas ²²⁶Ra/²³⁸U ratios are > 1 with an absolute difference 2.9. The ratios of ²²⁶Ra/²³⁸U clearly exhibiting the radioactive diseguilibrium in soil. In order to understand the environmental behavior of the radionuclides, plots were performed between ²²⁸Ra/²³⁸U and ²²⁶Ra/²³⁸U (Fig 1(A)); ²²⁶Ra/²³⁸U and total labile 238 U (Fig 1(B)). Fig 1(A) shows strong positive correlation R² = 0.90 and Fig 1(B) shows correlation R² = 0.42. This suggests that geochemical nature of U is highly mobile or it is intensively leaching from the surface soil than ²²⁶Ra. High values of ²²⁶Ra/²³⁸U disequilibrium are associated with depletion of ²³⁸U. Therefore, the radioactive disequilibrium data between ²²⁶Ra and ²³⁸U is crucial to predict the geochemical mechanism such as the dissolution or migration of ²³⁸U from surface soil. For detailed understanding of this phenomenon physicochemical characteristics of soils has also been carried out.

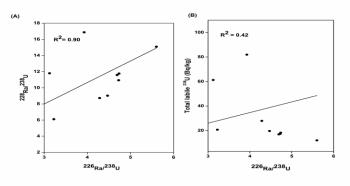


Fig. 1 (A) ²²⁶Ra/²³⁸U between ²²⁸Ra/²³²U; (B) ²²⁶Ra/²³⁸U between Total labile ²³⁸U