Statistical fluctuations and artificial constraints on systematic uncertainties

Andrey Popov On behalf of CMS collaboration

Université libre de Bruxelles

IRN Terascale Brussels, 16–18 Oct 2019

• Choose a distribution to study

- Choose a distribution to study
- Represented by a histogram

$$n_i \sim P(n_i; \lambda_i) = \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$

- Choose a distribution to study
- Represented by a histogram

$$n_i \sim P(n_i; \lambda_i) = \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$

- Expected distribution ('template') constructed using Monte–Carlo
 - Associated per-bin uncertainties σ_i

- Choose a distribution to study
- Represented by a histogram

$$n_i \sim P(n_i; \lambda_i) = \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$

- Expected distribution ('template') constructed using Monte–Carlo
 - Associated per-bin uncertainties σ_i
- Systematic variations given by alternative templates
 - Nuisance parameters to control inter- and extrapolation from reference templates: $\lambda_i = \lambda_i(\theta; \lambda_i^0, \lambda_i^+, \lambda_i^-)$

Likelihood

Likelihood for toy model with one physical systematic uncertainty:

$$\log L(\theta, \boldsymbol{\nu}; \mathbf{n}) = \sum_{i=1}^{m} \log P(n_i; \lambda_i(\theta) + \nu_i \sigma_i) - \theta^2/2 - \boldsymbol{\nu}^2/2 + \text{const}$$

- Poissonian term: $\log P(n; \lambda) = n \log \lambda \lambda \text{const}$
- \circ Nuisances u control variations due to per-bin MC stat. uncertainties
- Can maximize $\log L$ with respect to u analytically
 - Barlow–Beeston light method
- · Sensitivity is typically assessed with Asimov data set
 - Set **n** to expectation, i.e. $n_i = \lambda_i^0$

Constraints on systematic uncertainties

- Sensitivity to a systematic uncertainty is given by profiled likelihood
- If the variation is large compared to statistical uncertainties, it can be constrained

Constraints on systematic uncertainties

- Sensitivity to a systematic uncertainty is given by profiled likelihood
- No additional constraints if the variation is small

Fluctuations in systematic variations

- There are different types of systematic variations:
 - Global or per-event weights
 - Do not change the set of MC events that enter a particular bin
 - Uncertainties in cross sections, lepton ID efficiencies, etc.

Fluctuations in systematic variations

- There are different types of systematic variations:
 - Global or per-event weights
 - Do not change the set of MC events that enter a particular bin
 - Uncertainties in cross sections, lepton ID efficiencies, etc.
 - Independent variations
 - Constructed from dedicated samples
 - · Some theoretical uncertainties

Fluctuations in systematic variations

- There are different types of systematic variations:
 - Global or per-event weights
 - Do not change the set of MC events that enter a particular bin
 - Uncertainties in cross sections, lepton ID efficiencies, etc.
 - Independent variations
 - Constructed from dedicated samples
 - · Some theoretical uncertainties
 - Inter-bin migrations
 - Move events in and out of the signal region as well as between bins
 - · Jet momentum calibration and like

Constraints in the presence of fluctuations

- Fluctuations in templates describing systematic uncertainties lead to tighter constraints on corresponding nuisances
 - These constraints do not represent sensitivity to underlying physical effect

No sensitivity case

ullet As a proxy for the constraint, can use profiled likelihood at $heta=\pm 1$

$$\log R \equiv \max_{\nu} \log \frac{L_A(\pm 1, \nu)}{L_A^{\text{max}}} = \sum_{i=1}^m \log \frac{P(\lambda_i^0; \lambda_i^{\pm} + \hat{\nu}_i \sigma_i)}{P(\lambda_i^0; \lambda_i^0)} - \hat{\nu}^2 / 2 - 1/2$$

- If $\log R < -1/2$, there is an additional constraint on θ
- \circ Assuming parabolic dependence, $| heta| < (-2 \log R)^{-1/2}$ at 68% CL
- With $|\Delta \lambda_i| \ll \lambda_i^0$ and setting $k = \mathcal{L}_{ ext{eff}}^{ ext{MC}}/\mathcal{L}^{ ext{Data}}$,

$$\log R \approx -\frac{1}{2(k+1)} \sum_{i=1}^{m} \frac{(\lambda_i^{\pm} - \lambda_i^{0})^2}{\sigma_i^2} - 1/2$$

• If there is no real sensitivity, then $\lambda_i^{\pm} \sim \mathcal{N}(\lambda_i^0, \sigma_i^2)$, the sum follows χ_m^2 distribution, and

$$\langle \log R \rangle = -\frac{m}{2(k+1)} - 1/2$$

No sensitivity case

- Numeric study reproduces analytical results (shown with dashed lines)
 - The constraints become arbitrary tight as the number of bins grows
 - \circ Even with $\mathcal{O}(10)$ bins, impractically large \mathcal{L}_{eff} might be needed to avoid the constraints

Constraints with data

 The constraints are not an artifact of Asimov data set and occur also with pseudodata:

Constraints with data

 The constraints are not an artifact of Asimov data set and occur also with pseudodata:

- Fit finds $\hat{\theta}$ such that $\lambda(\theta)$ resembles noise in data best. Any deviations from $\hat{\theta}$ get penalized by the $\nu^2/2$ term in the likelihood
 - Parameters u have to be adjusted for a larger difference between the noise patters in data and in $\lambda(\theta)$

Real-life example: $H \rightarrow t\bar{t}$

- CMS search for heavy Higgs boson decaying to $t\bar{t}$
 - o arXiv:1908.01115, submitted to JHEP
- Focus on ℓ + jets channel as an example
 - Reconstructed $m_{t\bar{t}}$ as main observable
 - Angular variable reflects spin
 - Use 2D distribution in statistical analysis
 - Separate e + jets and $\mu + jets$ channels
 - 25 × 5 bins in each channel

Real-life example: $H \rightarrow t\bar{t}$

- CMS search for heavy Higgs boson decaying to $t\bar{t}$
 - arXiv:1908.01115, submitted to JHEP
- Focus on ℓ + jets channel as an example
 - Reconstructed $m_{t\bar{t}}$ as main observable
 - Angular variable reflects spin
 - Use 2D distribution in statistical analysis
 - Separate e + jets and $\mu + \text{jets}$ channels
 - 25 × 5 bins in each channel
- Initially observed unexpectedly tight constraints on some of nuisances
 - Asimov data set, MC stat. uncertainties not shown
 - All these templates affected by fluctuations

- Suppress fluctuations by smoothing relative deviations $\lambda_i^\pm/\lambda_i^0-1$
 - o Denser binning than used in the analysis to avoid binning artefacts
 - \circ Assume relative deviations are identical between $e+{
 m jets}$ and $\mu+{
 m jets}$
 - o Assume up and down deviations are symmetric in shape

- Suppress fluctuations by smoothing relative deviations $\lambda_i^{\pm}/\lambda_i^0-1$
 - Denser binning than used in the analysis to avoid binning artefacts
 - $\circ~$ Assume relative deviations are identical between $e+{\rm jets}$ and $\mu+{\rm jets}$
 - Assume up and down deviations are symmetric in shape
- Local linear regression as smoothing algorithm (LOWESS)
 - Weighted least squares fit to 2D rel. deviation with a linear function
 - Restrict the fit to rectangular window
 - Points further away from the centre of window receive smaller weights

- Suppress fluctuations by smoothing relative deviations $\lambda_i^{\pm}/\lambda_i^0-1$
 - Denser binning than used in the analysis to avoid binning artefacts
 - \circ Assume relative deviations are identical between $e+{
 m jets}$ and $\mu+{
 m jets}$
 - Assume up and down deviations are symmetric in shape
- Local linear regression as smoothing algorithm (LOWESS)
 - Weighted least squares fit to 2D rel. deviation with a linear function
 - Restrict the fit to rectangular window
 - Points further away from the centre of window receive smaller weights
 - Repeat while sliding the window
- In each bin, apply smoothed relative deviation to the nominal template to construct new systematic variations
 - \circ Rescaled independently for up and down variations minimizing χ^2 error

• Example of smoothing (a single angular bin shown)

Parameters of smoothing algorithm

- Dimensions of the window ('bandwidths') are free parameters of the algorithm
- Chosen with repeated cross-validation
 - Split events into k = 10 partitions
 - \circ Build smoothed rel. deviations from first k-1 partitions and compute approximation χ^2 error on the $k^{\rm th}$ partition
 - Repeat for the other k-1 possible choices of the test partition
 - Repeat everything with different (random) splittings of events into partitions
 - Choose bandwidths that give smallest average approximation error

Example of smoothing

An uncertainty with a real impact

Example of smoothing

An uncertainty with very little real impact

Constraints

Summary

- Statistical fluctuations in templates representing systematic uncertainties can lead to severe unphysical constraints on corresponding nuisances
 - $\circ~$ Get tighter as the number of bins grows or $\mathcal{L}_{eff}^{MC}/\mathcal{L}^{Data}$ decreases
 - Becomes especially important as large data sets are collected
 - Not addressed by MC stat. uncertainties in nominal templates
- Intuitive explanation: Fit takes into account not only the physical variation but also similarity between noise patterns in data and MC
- Smoothing of variations w. r. t. the nominal template can lift or reduce the constraints
 - Local regression was used in CMS search for $H \to t\bar{t}$, but other options are possible (e. g. smoothing splines or even (regularized) polynomial fit)