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Typical data analysis in HEP
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e Choose a distribution to study
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Typical data analysis in HEP

e Choose a distribution to study
e Represented by a histogram
ni
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e Expected distribution (‘template’)
constructed using Monte—Carlo

o Associated per-bin uncertainties o;
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-
Typical data analysis in HEP

e Choose a distribution to study
e Represented by a histogram
nj

Al .
ni ~ P(n;; \j) = n—'_le_)"

i

Events

e Expected distribution (‘template’)
constructed using Monte—Carlo

o Associated per-bin uncertainties o;

e Systematic variations given by
alternative templates %o 25 5.0 75 100 125 150 175  20.0

x

o Nuisance parameters to control inter- and extrapolation from reference
templates: \; = \i(6; A, AT, A7)
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-
Likelihood

e Likelihood for toy model with one physical systematic uncertainty:
log L(6,v;n) ZlogP ni; Xi(0) + vio;) — 62/2 — 1?2 + const

o Poissonian term: log P(n; A\) = nlog A\ — A\ — const
o Nuisances v control variations due to per-bin MC stat. uncertainties
e Can maximize log L with respect to v analytically
Barlow—Beeston light method
e Sensitivity is typically assessed with Asimov data set
o Set n to expectation, i.e. nj = A?
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Constraints on systematic uncertainties

e Sensitivity to a systematic uncertainty is given by profiled likelihood

e |f the variation is large compared to statistical uncertainties, it can be
constrained
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Constraints on systematic uncertainties

e Sensitivity to a systematic uncertainty is given by profiled likelihood
¢ No additional constraints if the variation is small
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Fluctuations in systematic variations

e There are different types of systematic variations:
o Global or per-event weights
e Do not change the set of MC events
that enter a particular bin
e Uncertainties in cross sections,
lepton ID efficiencies, etc.
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Fluctuations in systematic variations

e There are different types of systematic variations:
o Global or per-event weights

e Do not change the set of MC events
that enter a particular bin
e Uncertainties in cross sections,
lepton ID efficiencies, etc.
o Independent variations

e Constructed from dedicated samples
e Some theoretical uncertainties
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Fluctuations in systematic variations

e There are different types of systematic variations:
o Global or per-event weights

e Do not change the set of MC events
that enter a particular bin
e Uncertainties in cross sections,
lepton ID efficiencies, etc.
o Independent variations
o Constructed from dedicated samples
e Some theoretical uncertainties

o Inter-bin migrations
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e Jet momentum calibration and like
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Constraints in the presence of fluctuations

e Fluctuations in templates describing systematic uncertainties lead to
tighter constraints on corresponding nuisances

o These constraints do not represent sensitivity to underlying physical effect
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No sensitivity case

e As a proxy for the constraint, can use profiled likelihood at 6 = +1

m

_ AL, v) %A A Dioi) 52
|ogR:m3x|og Lmax Zl —AO) /2-1/2

o If log R < —1/2, there is an additional constraint on 6
o Assuming parabolic dependence, 0] < (—2log R)~*/? at 68% CL

e With |A);| < \? and setting k = £LMC/£Pat2,

1 (A =)0
log R ~ — P2 1/2
°8 2(k+1) ; o2 /

o If there is no real sensitivity, then A ~ N (\?,0?), the sum follows
X2, distribution, and
(logR) = — —-1/2
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No sensitivity case

e Numeric study reproduces analytical results (shown with dashed lines)

o The constraints become arbitrary tight as the number of bins grows
o Even with O(10) bins, impractically large L might be needed to avoid the
constraints
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Constraints with data

e The constraints are not an artifact of Asimov data set and occur also with
pseudodata:
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Constraints with data

e The constraints are not an artifact of Asimov data set and occur also with
pseudodata:
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Fit finds 6 such that A(6) resembles noise in data best. Any deviations
from 0 get penalized by the v2/2 term in the likelihood

o Parameters v have to be adjusted for a larger difference between the noise
patters in data and in A(6)
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Real-life example: H — tt

e CMS search for heavy Higgs boson < 5000 EMS o
decaying to tt g oo = Sgieton
o arXiv:1908.01115, submitted to JHEP ~ &*» =0t muter

Post-fit unc.
1500

e Focus on ¢ + jets channel as an example

o Reconstructed m;; as main observable
o Angular variable reflects spin .
o Use 2D distribution in statistical analysis 7'*
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http://arxiv.org/abs/1908.01115

Real-life example: H — tt

CMS Simulation Supplemental

e CMS search for heavy Higgs boson

decaying to tt :
o arXiv:1908.01115, submitted to JHEP = S —

e Focus on ¢ + jets channel as an example

o Reconstructed m;; as main observable ————

o Angular variable reflects spin ;

o Use 2D distribution in statistical analysis
o Separate e + jets and p + jets channels [——
e 25 x 5 bins in each channel :

uoneiqijed 323fqo ‘sajdwes juspuadapul ‘sIySIOAN

e Initially observed unexpectedly tight —
constraints on some of nuisances i ==
Asimov data set, MC stat. uncertainties ——

not shown =

o All these templates affected by fluctuations [ ——

-1.0 —0.5 0.0 0.5 1.0
Value of nuisance parameter
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-_______________________________________________
Smoothing

e Suppress fluctuations by smoothing relative deviations )\?E/)\? -1
o Denser binning than used in the analysis to avoid binning artefacts
o Assume relative deviations are identical between e + jets and p + jets
o Assume up and down deviations are symmetric in shape
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-_______________________________________________
Smoothing

e Suppress fluctuations by smoothing relative deviations )\?E/)\? -1
o Denser binning than used in the analysis to avoid binning artefacts
o Assume relative deviations are identical between e + jets and p + jets
o Assume up and down deviations are symmetric in shape

e Local linear regression as smoothing , x10°
algorithm (LOWESS)

o Weighted least squares fit to 2D rel.
deviation with a linear function .

e Restrict the fit to rectangular window
e Points further away from the centre
of window receive smaller weights

A=/A0-1
w

11/ 17



-_______________________________________________
Smoothing

e Suppress fluctuations by smoothing relative deviations )\?E/)\? -1
o Denser binning than used in the analysis to avoid binning artefacts
o Assume relative deviations are identical between e + jets and p + jets
o Assume up and down deviations are symmetric in shape

e Local linear regression as smoothing , x10°
algorithm (LOWESS) . .
o Weighted least squares fit to 2D rel. ]
deviation with a linear function .
o Restrict the fit to rectangular window 7 ! 0
o Points further away from the centre = 3
of window receive smaller weights < 2
o Repeat while sliding the window 1
e In each bin, apply smoothed relative o,
deviation to the nominal template to = 3 i ¢ §

X

construct new systematic variations

o Rescaled independently for up and down variations minimizing x? error
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-_______________________________________________
Smoothing

e Example of smoothing (a single angular bin shown)

CMS Simulation Supplementary

— Original
—— Smoothed
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Parameters of smoothing algorithm

e Dimensions of the window ('bandwidths") oL n Splementy

are free parameters of the algorithm —n

e Chosen with repeated cross-validation
o Split events into k = 10 partitions
o Build smoothed rel. deviations from first
k — 1 partitions and compute
approximation x? error on the k™ partition

426

8

Mean x? error
5

I

a18

416

o Repeat for the other k — 1 possible oz i eees
choices of the test partition S Simston Suon

o Repeat everything with different (random) e
splittings of events into partitions 1200 s

o Choose bandwidths that give smallest
average approximation error
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Example of smoothing

e An uncertainty with a real impact

10Uncl (up), e +jets, h=(0.5,0.2), x*=97.75
e
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Example of smoothing

e An uncertainty with very little real impact

1!
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Constraints

CMS Simulation Suj CMS Simulation Supplementary
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Summary

e Statistical fluctuations in templates representing systematic uncertainties
can lead to severe unphysical constraints on corresponding nuisances
o Get tighter as the number of bins grows or Lg?FC/EDa“ decreases

e Becomes especially important as large data sets are collected

o Not addressed by MC stat. uncertainties in nominal templates

e Intuitive explanation: Fit takes into account not only the physical
variation but also similarity between noise patterns in data and MC

e Smoothing of variations w. r. t. the nominal template can lift or reduce
the constraints

o Local regression was used in CMS search for H — tt, but other options are
possible (e.g. smoothing splines or even (regularized) polynomial fit)
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