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Typical data analysis in HEP
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• Choose a distribution to study

• Represented by a histogram

ni ∼ P(ni ;λi ) =
λnii
ni !

e−λi

• Expected distribution (‘template’)
constructed using Monte–Carlo
◦ Associated per-bin uncertainties σi

• Systematic variations given by
alternative templates
◦ Nuisance parameters to control inter- and extrapolation from reference

templates: λi = λi (θ;λ0
i , λ

+
i , λ

−
i )
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Likelihood
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• Likelihood for toy model with one physical systematic uncertainty:

log L(θ,ν;n) =
m∑
i=1

logP(ni ;λi (θ) + νiσi )− θ2/2− ν2/2 + const

◦ Poissonian term: logP(n;λ) = n log λ− λ− const
◦ Nuisances ν control variations due to per-bin MC stat. uncertainties

• Can maximize log L with respect to ν analytically
◦ Barlow–Beeston light method

• Sensitivity is typically assessed with Asimov data set
◦ Set n to expectation, i. e. ni = λ0

i



Constraints on systematic uncertainties
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• Sensitivity to a systematic uncertainty is given by profiled likelihood

• If the variation is large compared to statistical uncertainties, it can be
constrained
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• Sensitivity to a systematic uncertainty is given by profiled likelihood

• No additional constraints if the variation is small



Fluctuations in systematic variations
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• There are different types of systematic variations:
◦ Global or per-event weights

• Do not change the set of MC events
that enter a particular bin

• Uncertainties in cross sections,
lepton ID efficiencies, etc.

◦ Independent variations
• Constructed from dedicated samples
• Some theoretical uncertainties

◦ Inter-bin migrations
• Move events in and out of the signal

region as well as between bins
• Jet momentum calibration and like
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Constraints in the presence of fluctuations
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• Fluctuations in templates describing systematic uncertainties lead to
tighter constraints on corresponding nuisances
◦ These constraints do not represent sensitivity to underlying physical effect



No sensitivity case

7 / 17

• As a proxy for the constraint, can use profiled likelihood at θ = ±1

logR ≡ max
ν

log
LA(±1,ν)

Lmax
A

=
m∑
i=1

log
P(λ0

i ;λ±i + ν̂iσi )

P(λ0
i ;λ0

i )
− ν̂2/2− 1/2

◦ If logR < −1/2, there is an additional constraint on θ
◦ Assuming parabolic dependence, |θ| < (−2 logR)−1/2 at 68% CL

• With |∆λi | � λ0
i and setting k = LMC

eff /LData,

logR ≈ − 1

2(k + 1)

m∑
i=1

(λ±i − λ0
i )2

σ2
i

− 1/2

• If there is no real sensitivity, then λ±i ∼ N (λ0
i , σ

2
i ), the sum follows

χ2
m distribution, and

〈logR〉 = − m

2(k + 1)
− 1/2



No sensitivity case
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• Numeric study reproduces analytical results (shown with dashed lines)
◦ The constraints become arbitrary tight as the number of bins grows
◦ Even with O(10) bins, impractically large Leff might be needed to avoid the

constraints



Constraints with data
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• The constraints are not an artifact of Asimov data set and occur also with
pseudodata:

• Fit finds θ̂ such that λ(θ) resembles noise in data best. Any deviations

from θ̂ get penalized by the ν2/2 term in the likelihood
◦ Parameters ν have to be adjusted for a larger difference between the noise

patters in data and in λ(θ)
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Real-life example: H → tt̄
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• CMS search for heavy Higgs boson
decaying to tt̄
◦ arXiv:1908.01115, submitted to JHEP

• Focus on `+ jets channel as an example
◦ Reconstructed mtt̄ as main observable
◦ Angular variable reflects spin
◦ Use 2D distribution in statistical analysis

• Separate e + jets and µ + jets channels
• 25 × 5 bins in each channel

• Initially observed unexpectedly tight
constraints on some of nuisances
◦ Asimov data set, MC stat. uncertainties

not shown
◦ All these templates affected by fluctuations

http://arxiv.org/abs/1908.01115
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Smoothing
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• Suppress fluctuations by smoothing relative deviations λ±i /λ
0
i − 1

◦ Denser binning than used in the analysis to avoid binning artefacts
◦ Assume relative deviations are identical between e + jets and µ+ jets
◦ Assume up and down deviations are symmetric in shape

• Local linear regression as smoothing
algorithm (LOWESS)
◦ Weighted least squares fit to 2D rel.

deviation with a linear function
• Restrict the fit to rectangular window
• Points further away from the centre

of window receive smaller weights

◦ Repeat while sliding the window

• In each bin, apply smoothed relative
deviation to the nominal template to
construct new systematic variations
◦ Rescaled independently for up and down variations minimizing χ2 error
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Smoothing

CMS Simulation Supplementary
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• Example of smoothing (a single angular bin shown)



Parameters of smoothing algorithm

CMS Simulation Supplementary

CMS Simulation Supplementary

13 / 17

• Dimensions of the window (‘bandwidths’)
are free parameters of the algorithm

• Chosen with repeated cross-validation
◦ Split events into k = 10 partitions
◦ Build smoothed rel. deviations from first

k − 1 partitions and compute
approximation χ2 error on the k th partition

◦ Repeat for the other k − 1 possible
choices of the test partition

◦ Repeat everything with different (random)
splittings of events into partitions

◦ Choose bandwidths that give smallest
average approximation error



Example of smoothing
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• An uncertainty with a real impact
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• An uncertainty with very little real impact
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Summary
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• Statistical fluctuations in templates representing systematic uncertainties
can lead to severe unphysical constraints on corresponding nuisances
◦ Get tighter as the number of bins grows or LMC

eff /LData decreases
• Becomes especially important as large data sets are collected

◦ Not addressed by MC stat. uncertainties in nominal templates

• Intuitive explanation: Fit takes into account not only the physical
variation but also similarity between noise patterns in data and MC

• Smoothing of variations w. r. t. the nominal template can lift or reduce
the constraints
◦ Local regression was used in CMS search for H → tt̄, but other options are

possible (e. g. smoothing splines or even (regularized) polynomial fit)


