MoMEMta and Deep Neural Networks, a method to produce Matrix Element weights for LHC analyses

Florian Bury

IRN Terascale 2019 - Bruxelles

UCLouvain

Institut de recherche
en mathématique et physique

October 17, 2019

Matrix Element Method (MEM)

Matrix Element Method integral

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{\text {vis }}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Phase space parameterization

$$
d \phi(y)=\left(\prod_{i=3}^{N} \frac{d^{3} P_{i}}{2 E_{i}(2 \pi)^{3}}\right)(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}-\sum_{j=3}^{N} P_{j}\right)
$$

Matrix Element Method (MEM)

Matrix Element Method integral

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{v 5}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Phase space parameterization

$$
d \phi(y)=\left(\prod_{i=3}^{N} \frac{d^{3} P_{i}}{2 E_{i}(2 \pi)^{3}}\right)(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}-\sum_{j=3}^{N} P_{j}\right)
$$

Matrix Element Method (MEM)

Matrix Element Method integral

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{v 5}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Phase space parameterization

$$
d \phi(y)=\left(\prod_{i=3}^{N} \frac{d^{3} P_{i}}{2 E_{i}(2 \pi)^{3}}\right)(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}-\sum_{j=3}^{N} P_{j}\right)
$$

Advantages

- Exploits directly our knowledge of the SM
- Includes all detector effects (parametric way)
- No need for training ($><$ multivariate methods)

Drawbacks

- Complex integration \rightarrow MoMEMta
- Computation time \rightarrow DNN

```
\(\rightarrow\) Link
```

Numerical integration A dummy example

$$
\text { The game : Integrate } f(x, y)= \begin{cases}1 & x^{2}+y^{2}<1 \\ 0 & x^{2}+y^{2} \geq 1\end{cases}
$$

Numerical integration The game : Integrate $f(x, y)= \begin{cases}1 & x^{2}+y^{2}<1 \\ 0 & x^{2}+y^{2} \geq 1\end{cases}$ A dummy example

$$
\begin{aligned}
I \simeq S & =\frac{V}{N} \sum_{i}^{N} f\left(\vec{x}_{i}\right) \\
& =A_{\text {square }} \frac{N_{i n}}{N_{\text {total }}}
\end{aligned}
$$

Numerical integration
A dummy example
The game: Integrate $f(x, y)= \begin{cases}1 & x^{2}+y^{2}<1 \\ 0 & x^{2}+y^{2} \geq 1\end{cases}$

$$
\begin{aligned}
I \simeq S & =\frac{V}{N} \sum_{i}^{N} f\left(\vec{x}_{i}\right) \\
& =A_{\text {square }} \frac{N_{i n}}{N_{\text {total }}}
\end{aligned}
$$

Empty space phenomenon :

$$
\Phi(N) \propto N^{d}
$$

In high dimension: Impossible ! Solution: $\Phi(N) \propto \operatorname{Var}(f)$

Numerical integration A dummy example

$$
\begin{aligned}
I \simeq S & =\frac{V}{N} \sum_{i}^{N} f\left(\vec{x}_{i}\right) \\
& =A_{\text {square }} \frac{N_{\text {in }}}{N_{\text {total }}}
\end{aligned}
$$

Empty space phenomenon :

$$
\Phi(N) \propto N^{d}
$$

In high dimension: Impossible !
Solution: $\Phi(N) \propto \operatorname{Var}(f)$

Stratified sampling

$$
I \simeq S=\sum_{b o x_{i}} \frac{V\left(b o x_{i}\right)}{N_{i}} \sum_{n=1}^{N_{i}} f\left(\vec{x}_{i n}\right)
$$

Iteratively divide boxes in region where f fluctuates the most (high variance) and generate the same number of points in each box \Rightarrow Becomes slow in very high dimension space

Numerical integration A dummy example

$$
\begin{aligned}
I \simeq S & =\frac{V}{N} \sum_{i}^{N} f\left(\vec{x}_{i}\right) \\
& =A_{\text {square }} \frac{N_{\text {in }}}{N_{\text {total }}}
\end{aligned}
$$

Empty space phenomenon :

$$
\Phi(N) \propto N^{d}
$$

In high dimension: Impossible !
Solution: $\Phi(N) \propto \operatorname{Var}(f)$

Stratified sampling

$$
I \simeq S=\sum_{\text {box }_{i}} \frac{V\left(\text { box }_{i}\right)}{N_{i}} \sum_{n=1}^{N_{i}} f\left(\vec{x}_{i n}\right)
$$

Iteratively divide boxes in region where f fluctuates the most (high variance) and generate the same number of points in each box \Rightarrow Becomes slow in very high dimension space

Importance sampling

$$
I \simeq S=\frac{1}{N} \sum_{i}^{N} \frac{f(\vec{x})}{p(\vec{x})}
$$

Separable sampling function

$$
p(\vec{x})=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \ldots p_{N}\left(x_{N}\right)
$$

Numerical integration A dummy example

$$
\begin{aligned}
I \simeq S & =\frac{V}{N} \sum_{i}^{N} f\left(\vec{x}_{i}\right) \\
& =A_{\text {square }} \frac{N_{\text {in }}}{N_{\text {total }}}
\end{aligned}
$$

Empty space phenomenon :

$$
\Phi(N) \propto N^{d}
$$

In high dimension: Impossible !
Solution: $\Phi(N) \propto \operatorname{Var}(f)$

Stratified sampling

$$
I \simeq S=\sum_{\text {box }_{i}} \frac{V\left(\text { box }_{i}\right)}{N_{i}} \sum_{n=1}^{N_{i}} f\left(\vec{x}_{i n}\right)
$$

Iteratively divide boxes in region where f fluctuates the most (high variance) and generate the same number of points in each box \Rightarrow Becomes slow in very high dimension space

Importance sampling

$$
I \simeq S=\frac{1}{N} \sum_{i}^{N} \frac{f(\vec{x})}{p(\vec{x})}
$$

Separable sampling function $p(\vec{x})=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \ldots p_{N}\left(x_{N}\right)$

Peak remapping

Numerical integration

Back to the MEM

Matrix Element Method integral

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{v_{s} / 5}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Phase space parameterization

$$
d \phi(y)=\left(\prod_{i=3}^{N} \frac{d^{3} P_{i}}{2 E_{i}(2 \pi)^{3}}\right)(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}-\sum_{j=3}^{N} P_{j}\right)
$$

Integration rule: Map every shark peak to one variable of integration Where do they come from ?

- Transfer function resolution :

$$
W(x \mid y)=\prod_{i=1}^{n} W^{E}\left(x^{i} \mid y^{i}\right) W^{\eta}\left(x^{i} \mid y^{i}\right) W^{\phi}\left(x^{i} \mid y^{i}\right)
$$

- Propagator enhancements $\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2}: X$

Example: Breit-Wigner resonances
In addition, need to integrate out the δ of the momentum conservation

MoMEMta $C_{\operatorname{Lnk} k}$

A modular toolkit for the Matrix Element Method at the LHC

MoMEMta can perform the MEM integration almost out of the box

- C++ classes for each step of the MEM
- Configured via a Lua script
- Matrix element provided by MadGraph (via an included exporter Link)
- PDF from LHAPDF
- Integration with Cuba

Keyword: Modular \rightarrow uses a structure of blocks - Link

- Integrates out the delta
- Removes the proton momentum fractions
- Removes one particle momentum (invisible)
- Integrates over the resonance

Block structure example

Di-Higgs production: $H(b \bar{b}) H(W(I \nu) W(I \nu))$

Block structure example

Di-Higgs production: $H(b \bar{b}) H(W(I \nu) W(I \nu))$
(1) Use the transfer function

$$
x \text { (experimental) } \rightarrow \mathrm{y} \text { (parton level) }
$$

Block structure example

Di-Higgs production: $H(b \bar{b}) H(W(I \nu) W(I \nu))$
(1) Use the transfer function

x (experimental) $\rightarrow \mathrm{y}$ (parton level)
(2) Apply Seconday Block D

Removes $\left|p_{5}\right|$ or $\left|p_{6}\right|$
Integrates over p_{56} (BW or NWA)
(3) Apply Seconday Block C Removes $\left|p_{4}\right|$ (because neutrino) Integrates over $p_{34}\left(\mathrm{BW}\right.$ at $\left.m_{W}\right)$
(9) Apply Main Block B

Removes $q_{1}, q_{2}, \overrightarrow{P_{2}}$
Integrates over p_{1234} (BW or NWA) δ^{4} has been integrated out

Block structure example

Di-Higgs production: $H(b \bar{b}) H(W(I \nu) W(I \nu))$

(1) Use the transfer function

x (experimental) $\rightarrow \mathrm{y}$ (parton level)
(2) Apply Seconday Block D

Removes $\left|p_{5}\right|$ or $\left|p_{6}\right|$
Integrates over p_{56} (BW or NWA)
(3) Apply Seconday Block C Removes $\left|p_{4}\right|$ (because neutrino) Integrates over $p_{34}\left(\mathrm{BW}\right.$ at $\left.m_{W}\right)$
(9) Apply Main Block B

Removes $q_{1}, q_{2}, \overrightarrow{P_{2}}$
Integrates over p_{1234} (BW or NWA)
δ^{4} has been integrated out
(6) Specify the PDF scale (here M_{H})
(0) Link the ME

Needs a prior use of the ME exporter

Block structure example

Di-Higgs production: $H(b \bar{b}) H(W(I \nu) W(I \nu))$

(1) Use the transfer function

Each block only requires a few lines of Lua code from the user!
x (experimental) $\rightarrow \mathrm{y}$ (parton level)
(2) Apply Seconday Block D Removes $\left|p_{5}\right|$ or $\left|p_{6}\right|$ Integrates over p_{56} (BW or NWA)
(3) Apply Seconday Block C Removes $\left|p_{4}\right|$ (because neutrino) Integrates over $p_{34}\left(\mathrm{BW}\right.$ at $\left.m_{W}\right)$
(9) Apply Main Block B Removes $q_{1}, q_{2}, \overrightarrow{P_{2}}$ Integrates over p_{1234} (BW or NWA) δ^{4} has been integrated out
(6) Specify the PDF scale (here M_{H})
(0) Link the ME

Needs a prior use of the ME exporter

Application : discrimination

$\mathcal{D}_{ \pm}(x)=\frac{W\left(x \mid \overline{\mathrm{t}} \mathrm{W}^{+}\right)-W\left(x \mid \mathrm{t} \mathrm{W}^{-}\right)}{W\left(x \mid \overline{\mathrm{t}} \mathrm{W}^{+}\right)+W\left(x \mid \mathrm{t} \mathrm{W}^{-}\right)}$.

$$
\mathcal{D}_{\text {sig }}(x)=\left(1+\frac{P(x \mid \overline{\mathrm{t}} \mathrm{~b} \overline{\mathrm{~b}})}{P(x \mid \overline{\mathrm{t}} \mathrm{H})}\right)^{-1}
$$

Remaining obstacle

Gain from MoMEMta

- Complexity : Solved
- Computation time : Still expensive (LHC data analysis sizes, parameter scans, up and down fluctuations ...)

Remaining obstacle

Gain from MoMEMta

- Complexity : Solved
- Computation time : Still expensive (LHC data analysis sizes, parameter scans, up and down fluctuations ...)

Idea

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{v s}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Is a function of $x=P_{1}, P_{2}, P_{3}, \ldots$ that can be learned by a DNN

Remaining obstacle

Gain from MoMEMta

- Complexity : Solved
- Computation time : Still expensive
(LHC data analysis sizes, parameter scans, up and down fluctuations ...)

Idea

$$
P(x \mid \alpha)=\frac{1}{\sigma_{\alpha}^{v s}} \int_{y} d \phi(y) \int_{q_{1}, q_{2}} d q_{1} d q_{2} \sum_{a_{1}, a_{2}} f_{a_{1}}\left(q_{1}\right) f_{a_{2}}\left(q_{2}\right)\left|M_{\alpha}\left(q_{1}, q_{2}, y\right)\right|^{2} W(x \mid y)
$$

Is a function of $x=P_{1}, P_{2}, P_{3}, \ldots$ that can be learned by a DNN
Case study : $H \rightarrow Z A \rightarrow I l b b$ analysis, see

```
- Alessia's talk
```


$\sim 4 s /$ event

~ 15 s / event

~ 10 min / event / parameter

DNN regression results

tit sample : Ratio MEM/DNN weight $t \bar{t}$

Signal sample : Ratio MEM/DNN weight signal ($M_{H}=800 \mathrm{GeV}, M_{A}=400 \mathrm{GeV}$)

On average, with a DNN a weight can be computed in $150 \mu s$ on CPU
Note that the signal $(H \rightarrow Z A)$ DNN is parametric in M_{H} and M_{A}

New available applications

Likelihood with parameter scan

Log-Likelihood: Signal events with $M_{H}=300 \mathrm{GeV}$ and $\mathrm{M}_{\mathrm{A}}=100 \mathrm{GeV}$ [Normalized]

Classification

Parametric classification MEM vs DNN (All masses)

New available applications

Likelihood with parameter scan

Classification

Log-Likelihood: Signal events with $\mathrm{M}_{\mathrm{H}}=300 \mathrm{GeV}$ and $\mathrm{M}_{\mathrm{A}}=100 \mathrm{GeV}$ [Normalized]

Parametric classification MEM vs DNN (All masses)

MoMEMta not directly applicable on LHC data analyses Example : classifier applied on Alessia's samples

New available applications

Likelihood with parameter scan

Classification

Log-Likelihood: Signal events with $M_{H}=300 \mathrm{GeV}^{2}$ and $\mathrm{M}_{\mathrm{A}}=100 \mathrm{GeV}$ [Normalized]

Parametric classification MEM vs DNN (All masses)

MoMEMta not directly applicable on LHC data analyses Example : classifier applied on Alessia's samples

- Marginal gain in performances

New available applications

Likelihood with parameter scan

Log-Likelihood: Signal events with $\mathrm{M}_{\mathrm{H}}=300 \mathrm{GeV}$ and $\mathrm{M}_{\mathrm{A}}=100 \mathrm{GeV}$ [Normalized]

Classification

Parametric classification MEM vs DNN (All masses)

MoMEMta not directly applicable on LHC data analyses Example : classifier applied on Alessia's samples

- Marginal gain in performances
- Computation time comparison
- MoMEMta : ~ 3000 years (extrapolation)
- DNN : ~ 10 hours

Take-home messages

MoMEMta

- Modular and user-friendly (complexity hidden behind blocks)
- Customizable transfer functions
- Can use any LO model from MadGraph
\Rightarrow MEM is now within reach of any physicist
with Deep Neural Networks (paper not out yet)
- Computation time gains: 4 to 6 orders of magnitude
- Allows parameters scans or up-down fluctuations
- Always converges
- Can be used on large datasets
\Rightarrow MEM is now within reach of any physicist for LHC-scale analyses

Thank you

Back-up slides

Main blocks cum

(e) MB E

(f) MB F

Secondary blocks

