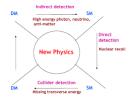
Recasting Direct Detection Limits Within MicrOMEGAs And Implication For Non-Standard DarkMatter Scenarios

Ali Mjallal

based on G. Belanger, A. Mjallal, A. Pukhov in preparation

LAPTh, Annecy

IRN Terrascale 2019, Bruxelles October 18, 2019


Goals

- Provide a tool that allows to reinterpret the 90% limits obtained by the experimental collaborations within their specific framework.
- Apply them to a wider set of Dark Matter (DM) models and DM velocity distributions.

Outline

- Introduction
- Direct Detection Framework.
- Recasting DD Limits With MicrOMEGAs
- Applications
- Conclusion

Direct DM Detection

- It is based on the search of the scattering between DM particles and nuclei in a detector.
- This process is observable through the recoiling nucleus, with an energy:

$$E_{R} = \frac{1}{2} m_{\chi} v^{2} \frac{4 m_{\chi} m_{N}}{(m_{\chi} + m_{N})^{2}} \frac{1 + \cos \theta}{2}$$

- No evidence for DM have been found.
- For DM masses above roughly 6 GeV, the best limits are currently obtained by XENON-1T.

Direct Detection Framework

Assumptions:

- Point-Like interaction (e.g. $\lambda_N \bar{\psi}_\chi \gamma_\mu \psi_\chi \bar{\psi}_N \gamma^\mu \psi_N$)
- Equal proton and neutron spin-independent (SI) cross sections.
- Specific choice of DM density $(\rho_{DM} = 0.3 \frac{GeV}{cm^3})$
- Maxwell velocity distribution of DM with these parameters $v_{Rot} = 220 \frac{Km}{s}$, $v_{Esc} = 544 \frac{Km}{s}$ and $V_{Earth} = 232 \frac{km}{s}$.

Direct Detection Framework

• The spectrum of DM recoils in case of heavy nuclei is:

$$\frac{dN^{SI}}{dE} = TM_{det} \frac{\rho_{DM}}{2M_{\chi}\mu_{\chi A}^2} \sigma^{SI} F^2(E) \int_{v_{min}} \frac{f(\vec{v})}{v} d\vec{v}$$

where $f(\vec{v})$ is the velocity distribution function of DM, $v_{min} = \sqrt{\frac{EM_A}{(2\mu_{\chi A}^2)}}$ and F(E) is nucleus form factor.

• SI DM-nucleons cross sections:

$$\sigma_{\chi N}^{SI} = \frac{4}{\pi} \mu_{\chi N}^2 \lambda_N^2 , \ N = n, p$$

• Multiplying $\frac{dN^{SI}}{dE}$ by detector 's acceptance p(E) (say Xenon) and then computing the likelihood, one can get the SI exclusion limits on DM-nucleon cross sections.

Note that
$$\mu_{\chi N} = \frac{M_\chi M_N}{M_\chi + M_N}$$
.

SI Xenon1T Reconstruction

- To repeat exactly Xenon1T analysis, we need detailed information on events distribution, background estimation and the used of nuisance parameters for all points of event space.
- Since we have incomplete informations, we assume that there
 is some effective subspace of the total space of events where
 no events were detected.
- In this region, the probability to register DM event after applying all cuts is $p_{eff}(E)$.
- Our goal is to recover $p_{eff}(E)$ using Xenon1T data, in order to recast exclusion for different condition.

Recovering p_{eff}

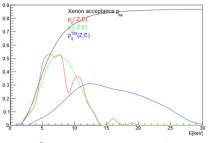
The likelihood function reads

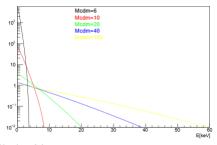
$$L = e^{-\mathcal{L}\int_0^{E_{max}} \left(p_{eff}(E)\frac{dN}{dE} + \frac{dB}{dE}\right)dE}$$

 \mathcal{L} is the exposure.

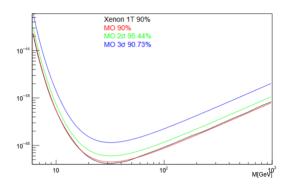
Maximal likelihood is reached for zero DM signal event. We introduce

$$p_{val} = \frac{L}{L_{max}} = e^{-\mathcal{L} \int_0^{E_{max}} p_{eff}(E) \frac{dN}{dE} dE}$$


• We exploit the exclusion provided by Xenon to derive an integral equation for the acceptance $p_{eff}(E)$.

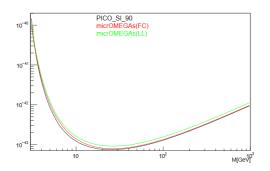

$$\mathcal{L} \int p_{eff}(E) \frac{dN^{90}(M_{\chi})}{dE} dE = log (1/p_{val}) = 2.3$$

Recovering p_{eff}


• Solving this equation, we reconstruct $p_{eff}(E)$.

- Our acceptance match very well the Xenon one near threshold, i.e. for E < 6 KeV and so we reproduce very well the exclusion at low masses since this is the only relevant region for DM masses below $10 \, GeV$.
- Right plot represents the predictions for the recoil energy distribution of Xenon nuclei for an exposure $\mathcal{L}=279*900-days-Kg$ and σ^{90} correspondent to each mass in the figure.

SI Xenon1T Reconstruction



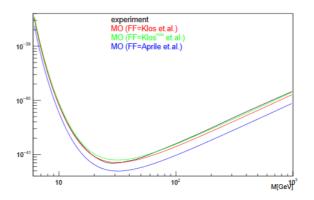
- We observe an excellent agreement between the Xenon1T excluded cross sections and our reconstruction.
- Maximal difference is roughly 10% and is reached for $M_{DM} = 20 \, GeV$.

SI PICO-60 Reconstruction

- To reconstruct the PICO-60 exclusion curve for SI interactions, we assume an acceptance described by a step function starting from zero and rising to 100% at a certain threshold energy.
- The value of the threshold is optimized in order to match the PICO-60 exclusion curve.
- We use two methods to derive the exclusion, a likelihood method and a method based on Feldman-Cousins.
- In both case the optimum value for the threshold is 1.6keV, which is slightly higher than the value used by PICO-60.

SI PICO-60 Reconstruction

90% SI exclusion limits on $\sigma_{\chi p}$ by PICO-60 experiment. The likelihood method leads to difference of at most 20% level for large masses, $M_{DM}>100\,GeV$ while the Feldman-Cousins method gives an excellent agreement for all masses.


SD PICO-60 Reconstruction

SD and SI interactions have very similar recoil energy spectra, therefore we use the recasting done for SI interactions and apply it directly to SD ones for both PICO-60 and Xenon1T.

90% SD excluded cross section $\sigma_{\chi p}$ by PICO experiment. Comparison of PICO and micrOMEGAs reconstruction. There are different sets of form factors and different curves reflect the impact of the uncertainty on form factors.

SD Xenon1T Reconstruction

90% SD excluded cross section $\sigma_{\chi n}$ by Xenon1T experiment. Comparison of Xenon1T and micrOMEGAs reconstruction for different sets of form factor. (see also Klos et al, Phys. Rev. D88 (2013) 083516 , Fitzpatrick et al, JCAP 1302 (2013) 004)

Applications

We can use our reconstruction of DD experimental limits to study these cases:

- Case of a light mediator.
- Dependence of exclusion cross section on cosmological parameters.
- Millicharged Dark matter.

Simplified Model For Illustration

ZpPortal Model

 We consider the case of a Z' portal with pure-vector couplings to the SM and a Dirac fermion DM. The Lagrangian is given by:

$$\mathcal{L}_{int} = - g_\chi Z_\mu' ar{\chi} \gamma^\mu \chi - \sum_f g_f Z_\mu' ar{f} \gamma^\mu f$$

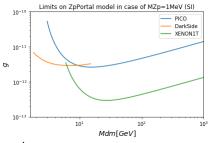
Light Mediator

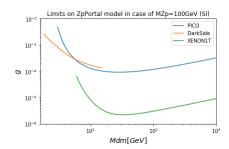
Motivations:

- Possibility to provide strong DM self-interactions and explain anomalies in galaxy clusters.
- Possibility to enhance the direct detection signal in models with feebly coupled particles.

Light Mediator

 We consider a long-range interaction between a DM particle and a nucleus A, with t-channel light propagator


$$\frac{1}{t - M_{med}^2} = \frac{-1}{2M_A E_R + M_{med}^2}$$


(see also Hambye et al., arXiv:1807.05022)

- For the typical minimal recoil energy in Xenon1T $E_R \sim 2 KeV$, $M_{Xe} \sim 130 \, GeV$ we can have $2 M_A E_R \sim (22 MeV)^2$.
- For any DM model, DD routines in micrOMEGAs calculates the amplitudes for CDM-nucleon elastic scattering at zero momentum and so the resulting recoil spectrum $(\frac{dN_A^{std}}{dE_R})$ has to be improved.
- DM recoil spectrum becomes:

$$\frac{dN_{A}}{dE_{R}} = \frac{M_{med}^{4}}{\left(M_{med}^{2} + 2M_{A}E_{R}\right)^{2}} \frac{dN_{A}^{std}\left(\sigma_{0}\right)}{dE_{R}}$$

Results For Zp Model

where $g = g_f g_\chi$.

- We always have the best exclusion from Xenon1T for high DM mass.
- In case of light mediator, we can probe smaller couplings and so testing FIMP DM model is possible.

Velocity Distribution

Maxwell

 It is the Standard isotropic isothermal spherical DM halo (SHM), in which velocities are isotropic and follow Gaussian law.

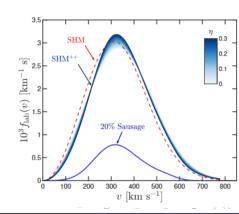
$$f(v) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp\left[-\frac{(\vec{v} + \vec{v}_{Earth})^2}{2\sigma^2}\right]$$

where $\sigma = \frac{v_{Rot}}{\sqrt{2}}$.

SHMpp

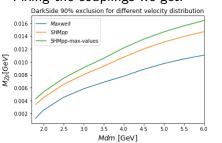
- Proposed in ref: Evans, O'Hare, McCabe, arXiv:1810.11468.
- New data suggest that our stellar halo lies in a strongly radially anisotropic population, the 'Gaia Sausage'.
- It is described as:

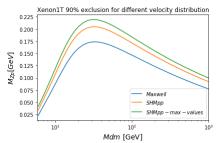
$$f(v) = (1 - \eta) f_{Maxwell}(v) + \eta f_{S}(v)$$


Velocity Distribution

where η is the DM density in the Sausage and f_S is the velocity distribution of the Gaia Sausage. It is a function of the anisotropy β .

These parameter are fit to Gaia data.


SHMpp parameters:


$$ho_{DM} = 0.55 \pm 0.17 \, GeV/cm^3$$
 $v_{Rot} = 233 \pm 3 \, km/s$
 $v_{Esc} = 580 \pm 63 \, km/s$
 $\beta = 0.9 \pm 0.05$
 $\eta = 0.2 \pm 0.1$

Results For Different Velocity Distribution

Fixing the couplings we get:

The strongest dependence on the velocity distribution is observed for small DM mass. For Xenon1T, we get the largest correction on the value of MZp excluded for $Mdm \simeq 6\,GeV$ (80%). While for DarkSide, the largest correction is for $Mdm \simeq 1.8\,GeV$ (238%). By increasing the value of ρ_{DM} we improve the sensitivity and so we can test even smaller cross sections (higher MZp).

Millicharged DM

 It is the SM plus an extra abelian gauge field that couples to a massive Dirac fermion ("Dark QED") and that mixes with SM 's hypercharge through the kinetic term:

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\psi} \left(\partial \!\!\!/ + i e' A \!\!\!\!/ + i M_{mcp} \right) \psi - \frac{k}{2} A'_{\mu\nu} B^{\mu\nu}$$

Where k << 1 and $B_{\mu\nu} = \cos(\theta_{\omega})A_{\mu} - \sin(\theta_{\omega})Z_{\mu}$ $A'_{\mu} \to A'_{\mu} - kB_{\mu}$, we get:

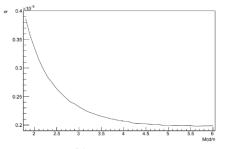
$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\psi} \left(\partial \!\!\!/ + i e' A' - i k e' B + i M_{mcp} \right) \psi \ .$$

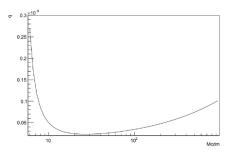
So DM couples to the photon and it has a millicharge $q=ke'\cos(\theta_\omega)$.

Millicharged DM

Photon can be tread as light mediator with a very small mass, thus allowing to write the energy distribution as:

$$\frac{dN_A^{ph}}{dE_R} = \frac{m_{ph}^4}{(2M_A E_R)^2} \frac{dN_A^{std} (\sigma_{\chi p})}{dE_R}$$


where $\sigma_{\chi p} = 16\pi lpha_{\it EM}^2 q^2 rac{\mu_{\chi p}^2}{m_{\it ph}^4}$


(see also Hambye et al., arXiv:1807.05022).

Note however that the parameter m_{ph} cancels out.

Results For Millicharged DM

DarkSide and Xenon1T exclusion limits on the parameter space of DM.

- However, millicharged DM loose energy before it reaches the detector through scattering with nucleus or electrons and so it may not produce a recoiling energy above threshold.
- There is an upper limit on DM charge 'q'. (work in progress)

Conclusion

MicrOMEGAs has a new module that allows:

- Impose DD limits on a variety of DM models (WIMP, light mediator, millicharged DM).
- take into account different velocity distributions, nuclear form factors
- Currently included: Xenon1T, Pico60, DarkSide50, CRESST3 (in progress).

We are planning to include other experiments when they improve on these results