Constraining Dark Matter - Dark Radiation Interactions With Lyman- α Data

Deanna C. Hooper

Based on Archidiacono, **DCH**, Murgia, Bohr, Lesgourgues, Viel (1907.01496)

Overview

1. Tensions in ΛCDM?

- H₀ measurements
- Other tensions

2. DM-DR interactions

- Formalism
- Solving the tensions

3. Using Lyman- α data

- What is Lyman- α
- Parameterisation
- Building a likelihood
- 4. Results
- 5. Outlook

Cosmological Tensions - H_0

- Expansion rate of the universe measured by CMB (early times) and supernovae (late times)
- Values do not agree!
 Currently there is a ~4.5σ tension
- CMB measurements assume ΛCDM.
 Supernovae assume a particular Cepheid calibration. Something has to be wrong...

Freedman et al. 1706.02739

Other Cosmological Tensions

- σ_8 gives measurement of the amplitude of the power spectrum on the scale of 8 Mpc/h. Weak lensing and CMB values at ~2 σ tension.
- A crisis on the smallest scales: mismatch between simulations and observations of structures in our local neighbourhood
 - Missing satellite problem: we observe fewer satellites than expected
 - Too-big-to-fail problem: most massive sub-halos have not ignited
 - Cusp-core problem: we see cored profiles, simulations prefer cusps
 - Diversity Problem: we see too many different galaxy profiles

DM-DR

Archidiacono, **DCH**, Murgia, Bohr, Lesgourgues, Viel 1907.01496

- Dark Matter Dark Radiation interactions induce a suppression of the matter power spectrum on small scales
- For general interactions, we use ETHOS formalism (Cyr-Racine et al. 1512.05344)
- We consider only the process $\chi \tilde{\gamma} \leftrightarrow \chi \tilde{\gamma}$, with no DM or DR self-interactions
- Relevant parameters: amplitude of scattering rate $a_{\rm dark}$, amount of dark radiation $\xi = T_{\rm dr}/T_{\gamma}$, temperature dependence of scattering rate n, dark matter mass $m_{\rm DM}$, and fraction of interacting dark matter $f_{\rm idm}$

Solving the tensions

- Case of n=0 may solve H₀ and σ_8 tensions (e.g. Buen-Abad et al. 1505.03542)
- DR acts like extra $N_{eff} \rightarrow H_0$ increases to maintain z_{eq}
- Collisional damping with DR suppresses DM growth, leading to a small scale matter power suppression \rightarrow lower σ_8
- The combination of relativistic particles and the DM-DR coupled fluid allows us to avoid constraints that kill other solutions to these tensions (extra Silk damping, added lensing, ...)
- Case of n = 4 can explain missing satellites (Archidiacono et al. 1706.06870)
- Later kinetic decoupling results in the matter power spectrum being suppressed on small scales → number of satellites is reduced

Lyman- α Data

Lyman- α Data

- Absorption lines produced by the inhomogeneous IGM along different line of sights to distant quasars
- Allows us to trace hydrogen clouds → smallest structures
- Provides a tracer of the matter power spectrum at high redshifts $(2 \lesssim z \lesssim 5)$ and small scales $(0.5 \, h/{\rm Mpc} \lesssim k \lesssim 20 \, h/{\rm Mpc})$
- IGM filament modelling requires nonlinear evolution: this needs N-body hydrodynamical simulations
- Every new set of cosmological parameters would require a new simulation, making MCMC analyses prohibitive

Lyman- α Likelihood

Alternative: focus on the shape of the suppression caused by

nCDM models

$$T^{2}(k) = \frac{P(k)_{\text{nCDM}}}{P(k)_{\text{CDM}}} = \left[1 + (\alpha k)^{\beta}\right]^{2\gamma}$$

- We have built a grid of hydro sims for over 100 different benchmark $\alpha\beta\gamma$, with a corresponding χ^2 given by Lyman- α data
- We interpolate in our grid to obtain a χ^2 from Lyman- α data for any nCDM model that can be described by $\alpha\beta\gamma$

DM-DR New Constraints

Archidiacono, **DCH**, Murgia, Bohr, Lesgourgues, Viel 1907.01496

DM-DR New Constraints

Archidiacono, **DCH**, Murgia, Bohr, Lesgourgues, Viel 1907.01496

Summary

- There are some unresolved tensions in ΛCDM. Dark Matter Dark Radiation interactions can alleviate these tensions
- The resulting suppression on the matter power spectrum makes Lyman- α data crucial to constrain these models
- Novel parameterisation allows us to interpolate in pre-computed grid of hydrodynamical simulations, allowing for MCMC analysis
- We obtained state-of-the-art constraints on interaction strength and amount of DR from Lyman- α data
- Our method is being extended to cover many more models and interactions

Thank you for your attention