

New Physics in double Higgs production at future e+e- colliders

Andres Vasquez

C. Degrande, A. Tonero, R. Rosenfeld, A. V. - arXiv:1901.05979 [hep-ph]

IRN Terascale

Brussels, October 2019

Goals

• Study the effects of New Physics parametrized by SM dimension-six operators in $e^+e^-\to h\,h^-$ at future lepton colliders

Perform sensitivity study for several benchmark values of energy and integrated luminosity

Motivation

In the SM, the process $gg \to hh$ (Plehn, Spira & Zerwas, 1996) present destructive interference between boxes and triangle topologies: the closer to the threshold, the stronger the cancellation. (Li & Voloshin, 2013)

Small cross-section

Sensitive to New Physics effects

Motivation

In the SM, the process $gg \to hh$ (Plehn, Spira & Zerwas, 1996) present interference between boxes and triangle topologies: the closer one gets to the threshold, the stronger the cancellation. (Li & Voloshin, 2013)

Does the process $e^+e^- \rightarrow hh$ show a similar behavior ?

Andres Vasquez 16/10/2019 4/20

colliders reach higher energies.

Different processes that will provide clean data to probe new physics.

Different process that will provide clean data to probe new physics.

What about the process $e^+e^- \rightarrow hh$?

Different process that will provide clean data to probe new physics.

What about the process $e^+e^- \rightarrow hh$?

Cross-section too small, doesn't even appear in the plot.

It is of order 10^{-2} fb

Different process that will provide clean data to probe new physics.

What about the process $e^+e^- \rightarrow hh$?

Cross-section too small, doesn't even appear in the plot.

It is of order 10^{-2} fb

Why is it too small?

Tree Level diagrams suppressed being proportional to the electron mass

Tree Level diagrams suppressed being proportional to the electron mass

The leading order is at 1-loop.

Triangle diagrams are negligible.

In the end, the leading order is given just by 8 box-diagrams.

In the end, the leading order is given just by 8 box-diagrams.

With the large luminosities at future lepton colliders, order one hundred of events might be collected in the course of few years.

Cross-section can be enhanced by BSM physics.

SM-EFT

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_pu_r\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{l}_p \gamma^{\mu} l_r)$
$Q_{\varphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A \mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^\dagger \varphi W^I_{\mu\nu} W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi\widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{d}_p \gamma^{\mu} d_r)$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

We consider effects of new physics parametrized by the presence of higher dimensional operators in the SMEFT framework. We write the SMEFT lagrangian as

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{oldsymbol{c}_i^{(n)}}{oldsymbol{\Lambda}^{n-4}} \mathcal{O}_i^{(n)} + \ldots$$

We focus on dimension-6 operators, and in particular we work in Warsaw basis.

(Grzadkowski et al., 2010)

	X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C}_{ ho}$	Ή	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(arphi^\dagger arphi) (ar{l}_p e_r arphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C}$	$'\mu$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{F}_{ ho}$	ζμ	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_pd_r\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{F}$	ζμ				
	$X^2 \varphi^2$			$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$ \varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu} $		Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{l}_p \gamma^{\mu} l_r)$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$		Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$		Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi\widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu\nu}^{I} W^{I\mu\nu}$		Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	4	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi\widetilde{B}}$	$ \varphi^{\dagger} \varphi \widetilde{B}_{\mu\nu} B^{\mu\nu} $		Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$		Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{d}_p \gamma^{\mu} d_r)$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^I \varphi \widetilde{W}_{\mu\nu}^I B^{\mu\nu}$		Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

A first class of dim-6 operators are those that modify the couplings eeZ, evW, hZZ and hWW.

They are already well constrained from LEP and LHC data (Higgs decay measurement)

A first sensitivity study can safely neglect their contribution.

	X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C}_{ ho}$	'μ	Q_{φ}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(arphi^\dagger arphi)(ar{l}_p e_r arphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C}$	μ	$Q_{arphi\square}$	$(\varphi^\dagger\varphi)\Box(\varphi^\dagger\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K}_{\rho}$	ζμ	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi)(ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K}$	ζμ				
	$X^2\varphi^2$			$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$		Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{l}_p \gamma^{\mu} l_r)$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$		Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu u}W^{I\mu u}$		Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi\widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$		Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{arphi q}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}_p \gamma^{\mu} q_r)$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	<	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi\widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$		Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$		Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$		Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

A second class of dim-6 operators are those that introduce a direct coupling beween ee and hh.

Tree-Level contribution.

A first class of dim-6 operators are those that modify the couplings eeZ, evW, hZZ and hWW.

They are already well constrained from LEP and LHC data (Higgs decay measurement)

A first sensitivity study can safely neglect their contribution.

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$ \varepsilon^{lphaeta\gamma} arepsilon_{jk} \left[(d_p^{lpha}) \right] $	$^T C u_r^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu} = \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(u_s^{\gamma})^T C e_t \right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$Q_{duu} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$				

Table 3: Four-fermion operators.

A third class of dim-6 operators are those that introduce a direct coupling beween ee and ttbar.

1-Loop contributions proportional to the top mass

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right] $	$^T C u_r^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$Q_{qqu} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^{\alpha j})^T C q_T^{\beta k} \right] \left[(u_s^{\gamma})^T C e_t \right]$			
$Q_{auad}^{(8)}$	$(\bar{q}_n^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$q = \frac{\varepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]}{2}$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Sauu	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

Table 3: Four-fermion operators.

A third class of dim-6 operators are those that introduce a direct coupling beween ee and ttbar.

1-Loop contributions proportional to the top mass

Almost all of the seven operators give zero contribution due to spinor structures

Parity reasoning

Just one operator survives.

	$\psi^2 \varphi^3$							
	Q_{earphi}	$(arphi^\daggerarphi)(ar{l}_pe_rarphi)$						
))	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$						

$Q_{quqd}^{(-)}$	$(q_p^j u_r) \varepsilon_{jk} (q_s^n d_t)$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

$$\mathcal{L} = \frac{c_{e\varphi}}{\Lambda^2} \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{l}_L \varphi e_R + \frac{c_{et}}{\Lambda^2} \epsilon_{ij} \left(\bar{l}_L^i e_R \right) \left(\bar{q}_L^j t_R \right)$$

	$\psi^2 \varphi^3$							
	Q_{earphi}	$(arphi^\daggerarphi)(ar{l}_pe_rarphi)$						
)	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$						

$Q_{quqd}^{(-)}$	$(q_p^j u_r) \varepsilon_{jk} (q_s^n d_t)$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

$$\mathcal{L} = \frac{c_{e\varphi}}{\Lambda^2} \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{l}_L \varphi e_R + \frac{c_{et}}{\Lambda^2} \epsilon_{ij} \left(\bar{l}_L^i e_R \right) \left(\bar{q}_L^j t_R \right)$$

Redefinition to keep the tree-level SM relation

$$m_e = y_e \frac{v}{\sqrt{2}}$$

$$\mathcal{L} = \frac{c_{e\varphi}}{\Lambda^2} \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{l}_L \varphi e_R + \frac{c_{et}}{\Lambda^2} \epsilon_{ij} \left(\bar{l}_L^i e_R \right) \left(\bar{q}_L^j t_R \right)$$

The electron-Higgs interaction gets modifications

at tree level from the operator \mathcal{O}_{earphi}

The electron-Higgs interaction gets modifications

at tree level from the operator $\mathcal{O}_{m{e}arphi}$

and at loop level from $\mathcal{O}_{\textit{et}}$

$$- \frac{1}{c_{et}} e^+ = -i\Sigma_e = -i\frac{6}{(4\pi)^2} \frac{c_{et}}{\Lambda^2} m_t^3 \left(1 + \frac{1}{\bar{\epsilon}} + \log\frac{\mu^2}{m_t^2}\right)$$

The electron-Higgs interaction gets modifications

at tree level from the operator $\mathcal{O}_{m{e}arphi}$

and at loop level from $\mathcal{O}_{\textit{et}}$

$$e^{-} \xrightarrow{c_{et}} e^{+} = -i\Sigma_{e} = -i\frac{6}{(4\pi)^{2}} \frac{c_{et}}{\Lambda^{2}} m_{t}^{3} \left(1 + \frac{1}{\bar{\epsilon}} + \log \frac{\mu^{2}}{m_{t}^{2}}\right)$$

Tree-level diagrams in SMEFT are computed with the new Yukawa coupling

$$-\frac{m_{\rm e}}{v} \to -\frac{m_{\rm e}}{v} + \frac{c_{\rm e\varphi}v^2}{\Lambda^2\sqrt{2}} - \frac{6}{(4\pi)^2} \frac{c_{\rm et}}{\Lambda^2} \frac{m_t^3}{v} \left(1 + \log \frac{\mu^2}{m_t^2}\right)$$

These diagrams are UV divergent

These diagrams are UV divergent

The operator that modifies the Yukawa coupling provides the counter-term for the top-loops

$$\delta c_{e\varphi} = \frac{6}{(4\pi)^2} c_{et} y_t \left(y_t^2 - \lambda \right) \frac{1}{\bar{\epsilon}}$$

$$\delta y_e = -\frac{3}{(4\pi)^2} c_{et} v^2 y_t^3 \frac{1}{\bar{\epsilon}}$$

Our Analysis

We compute the cross-section as a function of \sqrt{s} and of the Wilson coefficients $c_{e\varphi}$ and c_{et} , such that

$$\sigma^{\mathit{SMEFT}}\left(\sqrt{s}, rac{c_{earphi}}{\Lambda^2}, rac{c_{et}}{\Lambda^2}
ight) ~\sim~ \mathcal{O}\left(c_{earphi}^2
ight) + \mathcal{O}\left(c_{earphi}c_{et}
ight) + \mathcal{O}\left(c_{earphi}^2
ight).$$

Thus, the exclusion regions are computed through a χ^2 -distribution analysis

$$\chi^2\left(\sqrt{s}, rac{\textit{C}_{earphi}}{\Lambda^2}, rac{\textit{C}_{et}}{\Lambda^2}
ight) = rac{\left[\sigma^{\textit{SMEFT}}\left(\sqrt{s}, rac{\textit{c}_{earphi}}{\Lambda^2}, rac{\textit{c}_{et}}{\Lambda^2}
ight) - \sigma^{\textit{SM}}\left(\sqrt{s}
ight)
ight]^2}{\delta\sigma^2},$$

where the uncertainty is $\delta \sigma^2 = \delta \sigma_{stat}^2 + \delta \sigma_{sys}^2$ and

$$\delta\sigma_{stat} = \sqrt{\sigma^{SM}/L}$$
 $\delta\sigma_{sys} = \alpha\sigma^{SM}$ $(\alpha = 0.1)$

The computations were done using FeynRules, FeynArts + FormCalc + LoopTools and cross-check with NLOCT and MG5_aMC@NLO.

Benchmark values & Results

Benchmark	Experiment	\sqrt{s} (GeV)	$L (ab^{-1})$	$ c_{e\varphi}/\Lambda^2 (\text{TeV}^{-2})$	$ c_{et}/\Lambda^2 (\text{TeV}^{-2})$
1	FCC-ee	350	2.6	< 0.003 (< 0.004)	< 0.116 (< 0.146)
2	CLIC	380	0.5	< 0.004 (< 0.006)	< 0.143 (< 0.184)
3	ILC	500	4	< 0.003 (< 0.004)	< 0.068 (< 0.083)
4	CLIC	1500	1.5	< 0.003 (< 0.003)	< 0.027 (< 0.035)
5	CLIC	3000	3.0	< 0.002 (< 0.002)	< 0.012 (< 0.015)

Benchmark scenarios considered in our analysis.

The last two columns represent the 95 % CL intervals for each operator coefficient taken individually in the analysis with k = 1 (k = 0.35).

$$k = BR(h \to f_1 \bar{f}_1) \times BR(h \to f_2 \bar{f}_2)$$

k factor keeps track of the Branching Ratio (k=0.35 just $b\bar{b}$ decay)

Results

Benchmark	Experiment	\sqrt{s} (GeV)	<i>L</i> (ab ⁻¹)
1	FCC-ee	350	2.6
2	CLIC	380	0.5
3	ILC	500	4
4	CLIC	1500	1.5
5	CLIC	3000	3.0

Bounds for 95% C.L. with k = 1

$$\left| -\frac{m_e}{v} + \frac{c_{e\varphi}(\mu)v^2}{\Lambda^2\sqrt{2}} - \frac{3}{(4\pi)^2} \frac{y_t}{\sqrt{2}} \frac{c_{et}}{\Lambda^2} (4m_t^2 - m_h^2) \left[f(m_h^2, m_t^2) + \log \frac{\mu^2}{m_t^2} \right] \right| \lesssim 600 \frac{m_e}{v}$$

After considering all contributions to the eeh-vertex, the recent upper bound on the electron Yukawa coupling obtained from Higgs decay (Altmannshofer, Brod & Schmaltz, 2015)

$$\left| -\frac{m_e}{v} + \frac{c_{e\varphi}(\mu)v^2}{\Lambda^2\sqrt{2}} - \frac{3}{(4\pi)^2} \frac{y_t}{\sqrt{2}} \frac{c_{et}}{\Lambda^2} (4m_t^2 - m_h^2) \left[f(m_h^2, m_t^2) + \log \frac{\mu^2}{m_t^2} \right] \right| \lesssim 600 \frac{m_e}{v}$$

After considering all contributions to the eeh-vertex, the recent upper bound on the electron Yukawa coupling obtained from Higgs decay (Altmannshofer, Brod & Schmaltz, 2015)

$$\left| -\frac{m_e}{v} + \frac{c_{e\varphi}(\mu)v^2}{\Lambda^2\sqrt{2}} - \frac{3}{(4\pi)^2} \frac{y_t}{\sqrt{2}} \frac{c_{et}}{\Lambda^2} (4m_t^2 - m_h^2) \left[f(m_h^2, m_t^2) + \log \frac{\mu^2}{m_t^2} \right] \right| \lesssim 600 \frac{m_e}{v}$$

After considering all contributions to the eeh-vertex, the recent upper bound on the electron Yukawa coupling obtained from Higgs decay (Altmannshofer, Brod & Schmaltz, 2015)

The correction to the electron mass may introduce a fine tuning problem and in order to avoid it one must require that

$$|\delta m_e| \le m_e$$

In this case we have that

$$\left|rac{c_{et}}{\Lambda^2}
ight|\lesssim rac{8\pi^2}{3}rac{m_e}{m_t^3}\simeq 2 imes 10^{-3} {
m TeV}^{-2}$$

$$\left| -\frac{m_e}{v} + \frac{c_{e\varphi}(\mu)v^2}{\Lambda^2\sqrt{2}} - \frac{3}{(4\pi)^2} \frac{y_t}{\sqrt{2}} \frac{c_{et}}{\Lambda^2} (4m_t^2 - m_h^2) \left[f(m_h^2, m_t^2) + \log \frac{\mu^2}{m_t^2} \right] \right| \lesssim 600 \frac{m_e}{v}$$

After considering all contributions to the eeh-vertex, the recent upper bound on the electron Yukawa coupling obtained from Higgs decay (Altmannshofer, Brod & Schmaltz, 2015)

The correction to the electron mass may introduce a fine tuning problem and in order to avoid it one must require that

$$|\delta m_e| \le m_e$$

In this case we have that

$$\left| rac{c_{et}}{\Lambda^2}
ight| \lesssim rac{8\pi^2}{3} rac{m_e}{m_t^3} \simeq 2 imes 10^{-3} {
m TeV}^{-2}$$
 Fine tuning is a guidance.

Summary

- Double Higgs production at future e+e- colliders offers the possibility to explore sensitivity to dim-6 operators involving electrons which have not been constrained yet.
- More stringent bounds are found in the $e^+e^- \to t\bar{t}$ process for the coefficient c_{et} : order 10⁻³TeV⁻² (Durieux, Perello, Vos & Zhang, 2018)
- This process presents a small SM cross section, which could be useful in the clean environment of lepton accelerators for finding NP.
- We derived 95% bounds on $c_{e\varphi}$ and c_{et} for several benchmark set ups in future colliders, finding that the bounds on $c_{e\varphi}$ probe scales of O(10 TeV) while the c_{et} operator probes scales of O(1 TeV).

Summary

 Double Higgs production at future e+e- colliders offers the possibility to explore sensitivity to dim-6 operators involving electrons which have not been constrained yet.

More stringent bounds can be found in the $e^+e^- \rightarrow t\bar{t}$ process for the coefficient c_{et} (Durieux, Perello, Vos & Zhang, 2018)

- This process presents a small SM cross section, which could be useful in the clean environment of lepton accelerators for finding NP.
- We derived benchmark $c_{e\varphi}$ probe scales of O

Thanks!!!

reral e bounds or tor probes