

Search for additional neutral Higgs bosons through the $H \to ZA \to \ell\ell\bar{b}b$ process

IRN Terascale meeting VUB, Brussels

Alessia Saggio¹

¹CP3 - Université catholique de Louvain Louvain-la-neuve, Belgium

16-10-2019

Introduction

- ▶ Discovery of h(125) milestone for SM
- ▶ But we need BSM physics (to explain hierarchy problem, dark matter,...)

Search for new physics beyond the SM in the Higgs sector

Precise measurements of h(125) properties to:

- ► Assess whether h(125) is *the* SM Higgs boson
- Constrain BSM models

Search for extended Higgs sector

 Additional Higgs bosons predicted by many theoretical models

Extending the Higgs sector: the two-Higgs-doublet model

- 2HDM built by adding a second doublet to the SM scalar sector
- ▶ It predicts 5 new Higgs bosons:
 - 2 neutral CP-even: h, H
 - ▶ 1 neutral CP-odd: A
 - ▶ 2 charged: H[±]
- Other important parameters:

 - $cos(\beta \alpha)$, with α mixing angle between h and H
- ▶ Alignment limit: $cos(\beta \alpha) = 0 \rightarrow h_{2HDM} = h_{SM}$

Talk focused on the search for two of these new particles: H and A

Setting the stage

- ► Signal: $H \to Z(\to \ell^+\ell^-) A (\to b\bar{b})$ ► $\ell = e, \mu$
- Backgrounds:
 - ► DY + heavy flavor jets
 - ► tt fully-leptonic
 - ► Single top, SM Higgs, VV(V), W+jets

My job today: explain.

- Where do we search?
- ► How do we search?
- ▶ What did we find?

Setting the stage

- ▶ Signal: $H \to Z(\to \ell^+\ell^-) A (\to b\bar{b})$
 - $\ell = e, \mu$
- Backgrounds:
 - ▶ DY + heavy flavor jets
 - ► tt̄ fully-leptonic
 - ► Single top, SM Higgs, VV(V), W+jets

My job today: explain...

- ▶ Where do we search?
- ► How do we search?
- ▶ What did we find?

Where do we search?

The 2HDM mass hierarchy

- Search conducted on H→ZA and then mirrored to extend to A→ZH for theoretical interpretation
- ightharpoonup m_A range = 30 \div 1000 GeV
- $\blacktriangleright \ \mathsf{m_H} \ \mathsf{range} = 120 \div 1000 \ \mathsf{GeV}$

► CMS-PAS-HIG-18-012

The object reconstruction

- ▶ Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- ▶ The signal lies in the Z peak \rightarrow 70 < $m_{\ell\ell}$ < 110 GeV
- ▶ The signal has low MET content \rightarrow MET < 80 GeV
- ► Three categories are built according to the flavor of the di-lepton:

$$\mu^{+}\dot{\mu^{-}}$$
, $e^{+}e^{-}$, $\mu^{+}e^{-} + \mu^{-}e^{+}$

▶ Reconstruct m_{ii} and m_{ℓℓii}

► CMS-PAS-HIG-18-012

The object reconstruction

- ▶ Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- lacktriangle The signal lies in the Z peak ightarrow 70 < $m_{\ell\ell}$ < 110 GeV
- ightharpoonup The signal has low MET content ightarrow MET < 80 GeV
- ► Three categories are built according to the flavor of the di-lepton:

$$\mu^{+}\dot{\mu^{-}}$$
, $e^{+}e^{-}$, $\mu^{+}e^{-}+\mu^{-}e^{+}$

► Reconstruct m_{ii} and m_{ℓℓii}

► CMS-PAS-HIG-18-012

The object reconstruction

- ▶ Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- ▶ The signal lies in the Z peak \rightarrow 70 < $m_{\ell\ell}$ < 110 GeV
- ▶ The signal has low MET content \rightarrow MET < 80 GeV
- ► Three categories are built according to the flavor of the di-lepton:

$$\mu^{+}\mu^{-}$$
, $e^{+}e^{-}$, $\mu^{+}e^{-} + \mu^{-}e^{+}$

▶ Reconstruct m_{ii} and m_{ℓℓii}

The signal region definition

- Forget the 1D MC signal mass distributions: the 2D mass plane contains info about the correlation
- ▶ The signal shape in the $(m_{ij}, m_{\ell\ell jj})$ plane is affected by the experimental resolution of the m_{ij} and $m_{\ell\ell ji}$ distributions
- ▶ Define the SR as an ellipse in the $(m_{jj}, m_{\ell\ell jj})$ plane

Continuous parametrization of the SR as a function of the mass hypotheses

Optimizing the signal region

- Ellipses built under the assumption that the signal shape is Gaussian, while it's not!
- Instead of fixing the size of the ellipse, vary it to maximize the acceptance
- ▶ How? Define a parameter ρ : $\rho=1$ contains roughly 1 std. dev. of the signal events

Binning of the m_{jj} - $m_{\ell\ell jj}$ plane

▶ Vary ρ in range [0.5, 1, 1.5, 2, 2.5, 3]

Then fill histograms with events falling inside each elliptical bin

▶ Used as templates in the ML fit $(e-\mu)$ as CR to further constrain $t\bar{t}$

Binning of the m_{jj} - $m_{\ell\ell jj}$ plane

▶ Vary ρ in range [0.5, 1, 1.5, 2, 2.5, 3]

► Then fill histograms with events falling inside each elliptical bin

• Used as templates in the ML fit (e- μ as CR to further constrain $t\bar{t}$)

What did we find?

► CMS-PAS-HIG-18-012

Model-independent upper limits

▶ Highest local significance observed: 3.9σ at $m_H = 627$ GeV, $m_A = 162$ GeV. Don't get too excited... the **look-elsewhere effect** plays a role and needs to be estimated (see next slides)

What did we find?

► CMS-PAS-HIG-18-012

Interpretation in 2HDM

Excess: should we get excited?

Spoiler alert: no, we shouldn't...

▶ Local significance of 3.9σ observed at $m_H = 627$ GeV, $m_A = 162$ GeV

► How much is the global significance?

The look-elsewhere effect

- LEE: possibility for a signal-like fluctuation to appear anywhere within the search range
- ▶ Need to estimate the trial factor, then used to correct the local significance
- ▶ In 1D (only one parameter defined under the alternative hyp.):

- $ightharpoonup Z_{max} = \max local significance$
- N_{u0} = expectation number of up-crossings of test statistics at threshold u₀ (estimated with background toys)

Estimating the look-elsewhere effect in the $H \rightarrow ZA$ search

- ▶ Two parameters defined under the alternative hyp.: m_A and $m_H \rightarrow it$'s a 2D problem
- ► Generalization of 1D case (count "holes" instead of up-crossings)

- ▶ Toys generated via a customized Kernel Density Estimation for smoothing
- ▶ First time this technique was used in CMS!
- ▶ Result: $\sigma_{local} = 3.9 \rightarrow \sigma_{global} = 1.3$

More details in backup (or simply ask!)

Conclusions and perspectives

- ▶ Search for new Higgs bosons through $H \to ZA \to \ell\ell b\bar{b}$ presented
- ► Constraints set on 2HDM parameters
- ▶ A 3.9σ excess reduced to 1.3σ after estimating the LEE in 2D
- Overall, no significant deviations from the SM found
- lacktriangle Looking forward to searches with the full Run II with ${\sim}150~{
 m fb}^{-1}$

Thank you!

Conclusions and perspectives

- ▶ Search for new Higgs bosons through $H \to ZA \to \ell\ell b\bar{b}$ presented
- ► Constraints set on 2HDM parameters
- ▶ A 3.9σ excess reduced to 1.3σ after estimating the LEE in 2D
- Overall, no significant deviations from the SM found
- lacktriangle Looking forward to searches with the full Run II with ${\sim}150~{
 m fb}^{-1}$

Thank you!

Backup slides

Extending the Higgs sector

2HDM couplings

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$
ξ_H^u	$\sin \alpha / \sin \beta$			
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ_A^u	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ_A^d	$-\cot \beta$	$\tan \beta$	$-\cot \beta$	$\tan \beta$
ξ_A^ℓ	$-\cot \beta$	$\tan \beta$	$\tan \beta$	$-\cot \beta$

Table 2: Yukawa couplings of u,d,ℓ to the neutral Higgs bosons h,H,A in the four different models. The couplings to the charged Higgs bosons follow Eq. 16.

2HDM types

Two doublets ϕ_1 and ϕ_2 .

- ► Type-I: all SM particles couple to one doublet only;
- ▶ **Type-II**: up-type quarks couple to ϕ_1 , down-type quarks and leptons couple to ϕ_2
- ▶ **Type-III**: quarks couple to ϕ_1 , leptons to ϕ_2
- **Type-IV**: leptons and up-type quarks couple to ϕ_1 , down-type quarks couple to ϕ_2

Why this decay chain?

BR(H \to ZA) and BR(A \to bb̄) maximized in the alignment limit and over a large range of $tan\beta$

BSM searches @Runl

2HDM indirect searches

► The exclusion contours are derived from h(125) coupling measurements under the alignment limit assumption

MSSM direct searches

 Several benchmark scenarios for different phase space properties, e.g. MSSM m_h^{mod+}, hMSSM

Down-type fermionic channels become interesting

Reweighting the DY background 1/2

In a CR defined by not requiring the di-jet to be b-tagged:

- ightharpoonup A discrepancy up to $\sim 10\%$ is observed is some regions of the parameter space
- To correct for this, each DY event is reweighted by the observed discrepancy and an uncertainty of 100% of this discrepancy is applied
- In regions where the ellipses are fairly big, we want to avoid that well-modeled regions (very small uncertainty) constrain mismodeled regions (high uncertainty) →
- Uncorrelate this uncertainty across the mass plane by sampling it in 42 regions of approximately 150×150 GeV²
- ▶ Additional 42 uncorrelated shape uncertainties added

Reweighting the DY background 2/2

- Possible complication: when the ellipses are fairly large, regions with different kinematics might constrain each other
- ▶ One needs to uncorrelate this shape unc. across the plane
- ▶ Mass plane is split in regions of area 150×150GeV², yielding 42 new systematics

Additional shape uncertainty on DY+Jets

For reference: x-sec_{DY} uncertainty: 5%

Generating background toys 1/2

- We want to generate N background toys
- ▶ This means generating N different mass planes from which to extract the ellipses, or equivalently the ρ histograms
- ► The toy distribution in the mass plane is drawn from the existing one (DY+ttbar)
- ▶ In principle, one could directly generate toys from DY+ttbar in the 2D mass plane
- ▶ But stat. is really low in some regions! We want our background distirbutions in the mass plane to be as smooth as possible
- How? Smooth DY+ttbar in the mass plane with a "customized" Kernel Density Estimation
 - The smoothing is elliptic instead of Gaussian, with ellipse parameters interpolated from the existing ones event by event
- With these events, fill a very finely binned TH2 → here's DY+ttbar in the mass plane, but smoothed!

Generating background toys 2/2

- ▶ Generate N toys from this TH2 with no. events = no. events in data
- Fill ρ histograms for each TH2
- ▶ These toys are used as fake data in the LEE estimation

- Specifics:
 - ► N = 15
 - ► No. ellipses = 900
- ▶ I.e. 900 ρ histograms for each toy

LEE in 1D and 2D

- LEE: possibility for a signal-like fluctuation to appear anywhere within the search range
- Need to estimate the trial factor, then used to correct the local significance (or p-value)
- ► In 1D:

- where: $Z_{max} = \max$ local significance, $N_{u_0} =$ expectation number of upcrossings of test statistics at threshold u_0
- ► In 2D:

ightharpoonup where: $Z_{max}=\max$ local significance, N_1,N_2 are two coefficients that we need to estimate

LEE in 2D

- For each toy, compute the likelihood ratio (it's a 2D distribution)
- ightharpoonup Set a threshold ightharpoonup get holes in the plane (2D generalization of upcrossings in 1D)
- ▶ Then get N_1 , N_2 from solving the following system:
 - $\mathbb{E}[\phi(A_{u_0})] = \mathbb{P}[\chi_1^2 > u_0] + e^{u_0/2}(N_1 + N_2 \sqrt{u_0})$
 - $\mathbb{E}[\phi(A_{u_1})] = \mathbb{P}[\chi_1^2 > u_1] + e^{u_1/2}(N_1 + N_2 \sqrt{u_1})$
- where $\mathbb{E}[\phi(A_{u_0})]$ ($\mathbb{E}[\phi(A_{u_1})]$) is the expectation value of the number of holes in the plane (more precisely Euler characteristic) at threshold u_0 (u_1)
 - ▶ How to get E[φ(A_{ui})], in practice? For each toy, get the Euler characteristic at threshold u_i and average over the number of toys
- ▶ I set $u_0 = 0.1$ and $u_1 = 1$ (but doesn't matter if number of toys is sufficiently high)
- ▶ It's stable with 15 toys already!

Results

- ► Rows: toys
- ► Columns:
 - ▶ 1) Likelihood ratio distribution in mass plane
 - \triangleright 2) Likelihood ratio intersected with $u_0 = 0.1$
 - \triangleright 3) Likelihood ratio intersected with $u_1 = 1$

$$ightharpoonup \sigma_{local} = 3.9
ightarrow \sigma_{global} = 1.3$$