U UCLouvain

Search for additional neutral Higgs bosons through the $\mathbf{H} \rightarrow \mathbf{Z A} \rightarrow \ell \ell \overline{\mathrm{b}} \mathrm{b}$ process

IRN Terascale meeting VUB, Brussels

Alessia Saggio ${ }^{1}$
${ }^{1}$ CP3 - Université catholique de Louvain
Louvain-la-neuve, Belgium

Introduction

- Discovery of $\mathrm{h}(125)$ milestone for SM
- But we need BSM physics (to explain hierarchy problem, dark matter,...)

Search for new physics beyond the SM in the Higgs sector

Precise measurements of $h(125)$ properties to:

- Assess whether $\mathrm{h}(125)$ is the SM Higgs boson
- Constrain BSM models

Search for extended Higgs sector

- Additional Higgs bosons predicted by many theoretical models

Extending the Higgs sector: the two-Higgs-doublet model

- 2HDM built by adding a second doublet to the SM scalar sector
- It predicts 5 new Higgs bosons:
- 2 neutral CP-even: h, H
- 1 neutral CP-odd: A
- 2 charged: $\mathrm{H}^{ \pm}$
- Other important parameters:
- $\tan \beta=\frac{v 1}{v 2}$ (doublet vevs ratio)
- $\cos (\beta-\alpha)$, with α mixing angle between h and H
- Alignment limit: $\cos (\beta-\alpha)=0 \rightarrow \mathrm{~h}_{2 \mathrm{HDM}}=\mathrm{h}_{\mathrm{SM}}$

Talk focused on the search for two of these new particles: H and A

Setting the stage

- Signal: $\mathrm{H} \rightarrow \mathrm{Z}\left(\rightarrow \ell^{+} \ell^{-}\right) \mathrm{A}(\rightarrow \mathrm{b} \overline{\mathrm{b}})$
- $\ell=e, \mu$
- Backgrounds:
- DY + heavy flavor jets
- tē fully-leptonic
- Single top, SM Higgs, VV(V), W+jets

My job today: explain.

- Where do we search?
- How do we search?
- What did we find?

Setting the stage

- Signal: $\mathrm{H} \rightarrow \mathrm{Z}\left(\rightarrow \ell^{+} \ell^{-}\right) \mathrm{A}(\rightarrow \mathrm{b} \overline{\mathrm{b}})$
- $\ell=e, \mu$
- Backgrounds:
- DY + heavy flavor jets
- t̄̄ fully-leptonic
- Single top, SM Higgs, VV(V), W+jets

My job today: explain...

- Where do we search?
- How do we search?
- What did we find?

Where do we search?

The 2HDM mass hierarchy

- Search conducted on $\mathbf{H} \rightarrow \mathbf{Z A}$ and then mirrored to extend to $\mathrm{A} \rightarrow \mathrm{ZH}$ for theoretical interpretation
- m_{A} range $=30 \div 1000 \mathrm{GeV}$
- m_{H} range $=120 \div 1000 \mathrm{GeV}$

How do we search?

The object reconstruction

- Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- The signal lies in the Z peak $\rightarrow 70<m_{\ell \ell}<110 \mathrm{GeV}$
- The signal has low MET content \rightarrow MET $<80 \mathrm{GeV}$
- Three categories are built according to the flavor of the di-lepton:
$\mu^{+} \mu^{-}, e^{+} e^{-}, \mu^{+} e^{-}+\mu^{-} e^{+}$

How do we search?

The object reconstruction

- Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- The signal lies in the Z peak $\rightarrow 70<m_{\ell \ell}<110 \mathrm{GeV}$
- The signal has low MET content \rightarrow MET $<80 \mathrm{GeV}$
- Three categories are built according to the flavor of the di-lepton:
$\mu^{+} \mu^{-}, e^{+} e^{-}, \mu^{+} e^{-}+\mu^{-} e^{+}$
- Reconstruct m_{jj}

How do we search?

The object reconstruction

- Require 2 isolated opposite-sign leptons and 2 b-tagged jets
- The signal lies in the Z peak $\rightarrow 70<m_{\ell \ell}<110 \mathrm{GeV}$
- The signal has low MET content \rightarrow MET $<80 \mathrm{GeV}$
- Three categories are built according to the flavor of the di-lepton:
$\mu^{+} \mu^{-}, e^{+} e^{-}, \mu^{+} e^{-}+\mu^{-} e^{+}$
- Reconstruct m_{jj} and $\mathrm{m}_{\ell \ell \mathrm{jj}}$

How do we search?

The signal region definition

- Forget the 1D MC signal mass distributions: the 2D mass plane contains info about the correlation
- The signal shape in the $\left(\mathrm{m}_{\mathrm{jj}}, \mathrm{m}_{\ell \ell \mathrm{jj}}\right)$ plane is affected by the experimental resolution of the m_{jj} and $\mathrm{m}_{\ell \ell \mathrm{jj}}$ distributions
- Define the SR as an ellipse in the ($\mathrm{m}_{\mathrm{ij}}, \mathrm{m}_{\ell \ell \mathrm{jj}}$) plane

Continuous parametrization of the SR as a function of the mass hypotheses

Optimizing the signal region

- Ellipses built under the assumption that the signal shape is Gaussian, while it's not!
- Instead of fixing the size of the ellipse, vary it to maximize the acceptance
- How? Define a parameter $\rho: \rho=1$ contains roughly 1 std . dev. of the signal events

Binning of the $\mathrm{m}_{\mathrm{jj}}-\mathrm{m}_{\ell \ell \mathrm{jj}}$ plane

- Vary ρ in range $[0.5,1,1.5,2,2.5,3]$

- Then fill histograms with events falling inside each elliptical bin

Binning of the $\mathrm{m}_{\mathrm{jj}}-\mathrm{m}_{\ell \ell \mathrm{jj}}$ plane

- Vary ρ in range $[0.5,1,1.5,2,2.5,3]$

- Then fill histograms with events falling inside each elliptical bin

- Used as templates in the ML fit ($e-\mu$ as CR to further constrain $t \bar{t}$)

What did we find?

Model-independent upper limits

- Highest local significance observed: 3.9σ at $m_{H}=627 \mathrm{GeV}, m_{A}=162 \mathrm{GeV}$. Don't get too excited... the look-elsewhere effect plays a role and needs to be estimated (see next slides)

What did we find?

Excess: should we get excited?

Spoiler alert: no, we shouldn't...

- Local significance of 3.9σ observed at $m_{H}=627 \mathrm{GeV}, m_{A}=162 \mathrm{GeV}$

- How much is the global significance?

The look-elsewhere effect

- LEE: possibility for a signal-like fluctuation to appear anywhere within the search range
- Need to estimate the trial factor, then used to correct the local significance
- In 1D (only one parameter defined under the alternative hyp.):
$-p_{\text {global }} \simeq p_{\text {local }}+e^{\frac{u_{0}-Z_{\max }^{2}}{2}} N_{u_{0}}$
- $Z_{\text {max }}=\max$ local significance
- $N_{u_{0}}=$ expectation number of up-crossings of test statistics at threshold u_{0} (estimated with background toys)

Estimating the look-elsewhere effect in the $H \rightarrow Z A$ search

- Two parameters defined under the alternative hyp.: m_{A} and $m_{H} \rightarrow$ it's a 2D problem
- Generalization of 1D case (count "holes" instead of up-crossings)

- Toys generated via a customized Kernel Density Estimation for smoothing
- First time this technique was used in CMS!
- Result: $\sigma_{\text {local }}=3.9 \rightarrow \sigma_{\text {global }}=1.3$

More details in backup (or simply ask!)

Conclusions and perspectives

- Search for new Higgs bosons through $\mathrm{H} \rightarrow \mathrm{ZA} \rightarrow \ell \ell \mathrm{b} \overline{\mathrm{b}}$ presented
- Constraints set on 2HDM parameters
- A 3.9σ excess reduced to 1.3σ after estimating the LEE in 2 D
- Overall, no significant deviations from the SM found
- Looking forward to searches with the full Run II with $\sim 150 \mathrm{fb}^{-1}$

Conclusions and perspectives

- Search for new Higgs bosons through $\mathrm{H} \rightarrow \mathrm{ZA} \rightarrow \ell \ell \mathrm{b} \overline{\mathrm{b}}$ presented
- Constraints set on 2HDM parameters
- A 3.9σ excess reduced to 1.3σ after estimating the LEE in 2 D
- Overall, no significant deviations from the SM found
- Looking forward to searches with the full Run II with $\sim 150 \mathrm{fb}^{-1}$

Thank you!

Backup slides

Extending the Higgs sector

2HDM couplings

	Type I	Type II	Lepton-specific	Flipped
ξ_{h}^{u}	$\cos \alpha / \sin \beta$			
ξ_{h}^{d}	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
ξ_{h}^{ℓ}	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$
ξ_{H}^{u}	$\sin \alpha / \sin \beta$			
ξ_{H}^{d}	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_{H}^{ℓ}	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ_{A}^{u}	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ_{A}^{d}	$-\cot \beta$	$\tan \beta$	$-\cot \beta$	$\tan \beta$
ξ_{A}^{ℓ}	$-\cot \beta$	$\tan \beta$	$\tan \beta$	$-\cot \beta$

Table 2: Yukawa couplings of u, d, ℓ to the neutral Higgs bosons h, H, A in the four different models. The couplings to the charged Higgs bosons follow Eq. 16.

2HDM types

Two doublets ϕ_{1} and ϕ_{2}.

- Type-I: all SM particles couple to one doublet only;
- Type-II: up-type quarks couple to ϕ_{1}, down-type quarks and leptons couple to ϕ_{2}
- Type-III: quarks couple to ϕ_{1}, leptons to ϕ_{2}
- Type-IV: leptons and up-type quarks couple to ϕ_{1}, down-type quarks couple to ϕ_{2}

Why this decay chain?

$\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{ZA})$ and $\mathrm{BR}(\mathrm{A} \rightarrow \mathrm{b} \overline{\mathrm{b}})$ maximized in the alignment limit and over a large range of $\tan \beta$

BSM searches @Runl

2HDM indirect searches

- The exclusion contours are derived from $\mathrm{h}(125)$ coupling measurements under the alignment limit assumption

MSSM direct searches

- Several benchmark scenarios for different phase space properties, e.g. MSSM $\mathrm{m}_{\mathrm{h}}^{\text {mod+ }}$, hMSSM

Down-type fermionic channels become interesting

Reweighting the DY background $1 / 2$

- In a CR defined by not requiring the di-jet to be b-tagged:

- A discrepancy up to $\mathbf{\sim 1 0 \%}$ is observed is some regions of the parameter space
- To correct for this, each DY event is reweighted by the observed discrepancy and an uncertainty of $\mathbf{1 0 0 \%}$ of this discrepancy is applied
- In regions where the ellipses are fairly big, we want to avoid that well-modeled regions (very small uncertainty) constrain mismodeled regions (high uncertainty) \rightarrow
- Uncorrelate this uncertainty across the mass plane by sampling it in 42 regions of approximately $150 \times 150 \mathrm{GeV}^{2}$
- Additional 42 uncorrelated shape uncertainties added

Reweighting the DY background $2 / 2$

- Possible complication: when the ellipses are fairly large, regions with different kinematics might constrain each other
- One needs to uncorrelate this shape unc. across the plane
- Mass plane is split in regions of area $150 \times 150 \mathrm{GeV}^{2}$, yielding 42 new systematics

Additional shape uncertainty on DY+Jets

- For reference: x-sec ${ }_{D Y}$ uncertainty: 5%

Generating background toys $1 / 2$

- We want to generate N background toys
- This means generating N different mass planes from which to extract the ellipses, or equivalently the ρ histograms
- The toy distribution in the mass plane is drawn from the existing one (DY+ttbar)
- In principle, one could directly generate toys from DY+ttbar in the 2D mass plane
- But stat. is really low in some regions! We want our background distirbutions in the mass plane to be as smooth as possible
- How? Smooth DY+ttbar in the mass plane with a "customized" Kernel Density Estimation
- The smoothing is elliptic instead of Gaussian, with ellipse parameters interpolated from the existing ones event by event
- With these events, fill a very finely binned TH2 \rightarrow here's DY+ttbar in the mass plane, but smoothed!

Generating background toys $2 / 2$

- Generate N toys from this TH2 with no. events $=$ no. events in data
- Fill ρ histograms for each TH2
- These toys are used as fake data in the LEE estimation

- Specifics:
- $\mathrm{N}=15$
- No. ellipses $=900$
- I.e. 900ρ histograms for each toy

LEE in 1D and 2D

- LEE: possibility for a signal-like fluctuation to appear anywhere within the search range
- Need to estimate the trial factor, then used to correct the local significance (or p -value)
- In 1D:
$-p_{\text {global }} \simeq p_{\text {local }}+e^{\frac{u_{0}-Z_{\max }^{2}}{2}} N_{u_{0}}$
- where: $Z_{\max }=\max$ local significance, $N_{u_{0}}=$ expectation number of upcrossings of test statistics at threshold u_{0}
- In 2D:
$-p_{\text {global }} \simeq p_{\text {local }}+e^{-\frac{Z_{\max }^{2}}{2}}\left(N_{1}+N_{2} Z_{\max }\right)$
- where: $Z_{\max }=\max$ local significance, N_{1}, N_{2} are two coefficients that we need to estimate

LEE in 2D

- For each toy, compute the likelihood ratio (it's a 2D distribution)
- Set a threshold \rightarrow get holes in the plane (2D generalization of upcrossings in 1D)
- Then get N_{1}, N_{2} from solving the following system:
- $\mathbb{E}\left[\phi\left(A_{u_{0}}\right)\right]=\mathbb{P}\left[\chi_{1}^{2}>u_{0}\right]+e^{u_{0} / 2}\left(N_{1}+N_{2} \sqrt{u_{0}}\right)$
- $\mathbb{E}\left[\phi\left(A_{u_{1}}\right)\right]=\mathbb{P}\left[\chi_{1}^{2}>u_{1}\right]+e^{u_{1} / 2}\left(N_{1}+N_{2} \sqrt{u_{1}}\right)$
- where $\mathbb{E}\left[\phi\left(A_{u_{0}}\right)\right]\left(\mathbb{E}\left[\phi\left(A_{u_{1}}\right)\right]\right)$ is the expectation value of the number of holes in the plane (more precisely Euler characteristic) at threshold $u_{0}\left(u_{1}\right)$
- How to get $\mathbb{E}\left[\phi\left(A_{u_{i}}\right)\right]$, in practice? For each toy, get the Euler characteristic at threshold u_{i} and average over the number of toys
- I set $u_{0}=0.1$ and $u_{1}=1$ (but doesn't matter if number of toys is sufficiently high)
- It's stable with 15 toys already!

Results

- Rows: toys
- Columns:
- 1) Likelihood ratio distribution in mass plane
- 2) Likelihood ratio intersected with $u_{0}=0.1$
- 3) Likelihood ratio intersected with $u_{1}=1$

- $\sigma_{\text {local }}=3.9 \rightarrow \sigma_{\text {global }}=1.3$

