

IRN Terascale@Brussels 16 Oct 2019

H→γγ cross sections

Latest STXS results with 80 fb⁻¹

ATLAS-CONF-2018-028

- Simplified Template X-Sections at two stages
 - Stage-0: truth-level splitting of Higgs production processes
 - Stage-1 (reduced):

Additional splitting based on Higgs kinematics and associated particles

Minimal model dependence in these measurements; ideal setup for combinations of all channels and with CMS measurements

ttH measurement with 139 fb⁻¹

ATLAS-CONF-2019-004

$$\mu_{t\bar{t}H} = 1.38 ^{+0.41}_{-0.36}$$

4.9σ observation

H→γγ cross sections

New results with the full Run-2 data from the LHC, 139 fb⁻¹ ATLAS-CONF-2019-029

Measurement of *fiducial* cross sections

No separation of production modes, model-independent measurements allowing comparison with predictions in the phase space directly accessible by our detector

integrated:

$$(\sigma \cdot BR)_{(pp \to H \to \gamma \gamma)} = N_{\text{signal}} / (\mathcal{L} \cdot \varepsilon)$$

differential:

$$d(\sigma \cdot BR)/dx$$
, x: $p_T^{\gamma\gamma}$, $y^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$

Observables sensitive to new physics, CP-properties but also QCD calculations in the SM

- Interpretations of the differential measurements
 - Effective Lagrangian (SILH, Warsaw) with additional CP-odd and CP-even interactions
 - setting limits on charm-Yukawa coupling from shape of $p_T^{\gamma\gamma}$

The analysis in a nutshell

- $H \rightarrow \gamma \gamma$ signal extracted from the continuous background with a mass fit
 - Background estimation directly from data using analytical functions
 - Background modelling uncertainty ('spurious signal') from fits to highstatistics MC-based background templates
- Yields unfolded to a fiducial volume matching the experimental acceptance
- Kinematic selections:
 - $E_{T1}>0.35m_{yy}$, $E_{T2}>0.25m_{yy}$
 - $|\eta^{\gamma}| < 1.37$ or $1.52 < |\eta^{\gamma}| < 2.37$
 - Jets: $p_T>30$ GeV, |y|<4.4 (jet-related)
 - Photon isolation at recon. & particle level

- Bin-by-bin correction factor from simulation, $c_{fid} = N_{sig}/N_{fid}$
- Matrix-based unfolding as a check

$$\sigma_{\text{fid}} = \frac{N^{\text{sig}}}{c_{\text{fid}} \mathcal{L}_{\text{int}}}$$

Improvements with respect to previous measurements

- Reduced statistical uncertainties
- Improved signal efficiency/background rejection for diphotons
 - new p_T^{γ} -dependent identification
- Reduced systematic uncertainties thanks to:
 - improved isolation efficiency measurements
 - improved jet calibration, optimized for Run-2 conditions
 - new technique in the estimation of the background modelling uncertainty, Gaussian Processes (arXiv: 1709.05681), used to smooth the MC-based templates

Unfolding uncertainties

- Experimental, from efficiencies and jet-energy scale/resolution => dominant
 - Photon identification and isolation efficiency accurate at the 1% level
 - JES/JER is dominant for jet-based observables
- Theoretical, from dependence on the SM assumptions => subdominant
 - Parton showering
 - Higgs kinematics / production mode
 - Dalitz contributions

Integrated cross-section

• Fiducial xsection times $H \rightarrow \gamma \gamma$ branching ratio:

$$\sigma_{\rm fid} = 65.2 \pm 4.5 \, ({\rm stat.}) \pm 5.6 \, ({\rm syst.}) \pm 0.3 \, ({\rm theo.}) \, {\rm fb}$$

SM prediction: 63.6 ± 3.3 fb , arXiv: 1610.07922 [hep-ph]

- SM prediction based on calculations accurate to:
 - N³LO for ggF
 - NNLO (approx.) VBF
 - (N)NLO for VH, ttH and bbH
- Experimental uncertainties dominate:
 - photon energy resolution
 - background modelling

Source	Uncertainty (%)
Statistics	6.9
Signal extraction syst.	7.9
Photon energy scale & resolution	4.6
Background modelling (spurious signal)	6.4
Correction factor	2.6
Pile-up modelling	2.0
Photon identification efficiency	1.2
Photon isolation efficiency	1.1
Trigger efficiency	0.5
Theoretical modelling	0.5
Photon energy scale & resolution	0.1
Luminosity	1.7
Total	11.0

Differential cross-section vs $p_T^{\gamma\gamma}$ and $|y^{\gamma\gamma}|$

- High $p_T^{\gamma\gamma}$: sensitive to top-quark mass effects and new physics contributions
- Low-p_T^{γγ}: sensitive to resummation effects; fine binning used to probe the Higgsboson Yukawa coupling to the charm quark
- Rapidity is sensitive to the gluon distribution in the proton

Good agreement observed between data and the predictions

(Default ggF MC: Powheg NNLOPS scaled to N³LO)

Cross-section vs N_{jets}

- Large systematic uncertainties from jet-energy scale and resolution, 6%-25%
- Comparison for multiple ggF predictions added to the same XH component
- Comparison in bins of exclusive and inclusive jet multiplicity

Good agreement seen with the predictions; N³LO normalization improves agreement

Differential cross-section vs p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$

- Observables with sensitivity to new physics
 - p_T^{j1}: jet leading in p_T
 - m_{jj} (for the two leading-b_T jets): sensitivity to VBF in the high mass bin
 - $\Delta \phi_{jj} = \phi^{j1} \phi^{j2}$, $\eta^{j1} > \eta^{j2}$ ($\frac{\text{for the two}}{\text{leading-b_T jets}}$): sensitivity to CP properties of the Higgs boson

Good agreement observed; no significant excess that would indicate non-SM behaviour

EFT interpretation using the differential cross-sections

- Dim-6 extension of the SM Lagrangian in the SILH (Higgs Effective) and Warsaw (SMEFT) bases
- $\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$
- Wilson coefficients c_i quantify the strength of the new interactions (CP-even/odd)

$$\mathcal{L}_{\text{eff}}^{\text{SILH}} \supset \overline{c}_{g} O_{g} + \overline{c}_{\gamma} O_{\gamma} + \overline{c}_{HW} O_{HW} + \overline{c}_{HB} O_{HB} \qquad \mathcal{L}_{\text{eff}}^{\text{SMEFT}} \supset \overline{C}_{HG} O_{g}' + \overline{C}_{HW} O_{HW}' + \overline{C}_{HB} O_{HB}' + \overline{C}_{HWB} O_{HWB}' \\ + \widetilde{c}_{g} \widetilde{O}_{g} + \widetilde{c}_{\gamma} \widetilde{O}_{\gamma} + \widetilde{c}_{HW} \widetilde{O}_{HW} + \widetilde{c}_{HB} \widetilde{O}_{HB}' + \widetilde{C}_{HW} \widetilde{O}_{HW}' + \widetilde{C}_{HB} \widetilde{O}_{HW}' + \widetilde{C}_{HB} \widetilde{O}_{HB}' + \widetilde{C}_{HWB} \widetilde{O}_{HWB}'$$

$$\overline{C}_{i} \equiv C_{i} v^{2} / \Lambda^{2}$$

Fiducial measurements can probe the strength of new interactions

Predictions for the diff. xsections as function of c_i , from MadGraph (SILH) and SMEFTsim (Warsaw)

EFT interpretation using the differential cross-sections

Procedure to set limits on the Wilson coefficients:

$$\mathcal{L} = \frac{1}{\sqrt{(2\pi)^k |C|}} \exp\left(-\frac{1}{2} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)^T C^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)\right)$$

C: covariance matrix: C_{stat} + C_{syst} + C_{theo}

Statistical correlation [%]

- C_{stat} built from statistical correlations between bins
- C_{syst} built from experimental uncertainties of the measured xsections
- C_{theo} built from theoretical uncertainties on the predicted xsections

EFT interpretation using the differential cross-sections

1d and 2d limits on SILH coefficients

1d limits on SMEFT coefficients

Fitting one (or two) coeff., with others fixed to zero

Interference of dim.6-SM operators studied separately

Given high-level of compatibility of cross-section measurements with the SM, setting narrow limits around the SM expectation (c_i =0)

- SILH: ×2 improvement compared to last ATLAS results with 36 fb-1
- SMEFT/Warsaw: First ATLAS results

charm-Yukawa interpretation of $p_T^{\gamma\gamma}$

- Limit on the $\kappa_c = Y_c/Y_c^{SM}$ modification of the charm coupling with an indirect approach
- Modelling the effect of κ_c on the **shape of the** $p_T^{\gamma\gamma}$ **distribution**, assuming:
 - Modification on gg→H (from c in the loop) cross section from RadISH (NNLL+NLO)
 - Modification on cc/cg→H cross section from MadGraph

 (NLO)

charm-Yukawa interpretation of $p_T^{\gamma\gamma}$

- Indirect approach using the shape of $p_T^{\gamma\gamma}$ (normalization is profiled)
 - Limited by statistical uncertainty
 - Big loss of sensitivity by not modelling the effect of κ_c on the branching ratio, at the benefit of a simpler model with fewer assumptions

Summary and conclusions

- Preliminary measurements and interpretations with the full Run-2 dataset
- Integrated fiducial cross section becomes systematically limited; in agreement with the SM prediction
- Model-independent differential fiducial cross-section measurements still statistically limited
 - Useful comparisons with higher-order QCD calculations
- Interpretations in the context on an effective Lagrangian
 - Now exploiting CP-sensitive variables, i.e. $\Delta \phi_{ij}$
 - Improved limits with SILH basis compared to previous analyses thanks to the larger dataset
 - First ATLAS limits on the SMEFT/Warsaw basis
- Limits on charm Yukawa coupling of the Higgs boson, exploiting only shape information for minimal model dependence

Backup

SMEFT - Warsaw basis

Terms contributing to the cross section in the dim.6 EFT expansion:

$$\sigma \propto |\mathcal{M}_{\text{EFT}}|^2 = |\mathcal{M}_{\text{SM}}|^2 + |\mathcal{M}_{\text{d6}}|^2 + 2Re(\mathcal{M}_{\text{SM}}^*\mathcal{M}_{\text{d6}})$$

For small values of c_i , the interference term dominates => σ has linear dependence on c_i

$$\frac{c_i^2}{\Lambda^4}$$

$$\frac{c_i}{\Lambda^2}$$

- Useful feature for interpolating between different values of ci
- Interference term disappears for CP-odd operators; tiny modification of all observables except $\Delta\phi_{jj}$
- Results are provided considering both the linear and the quadratic terms
 - Useful for considerations of the EFT validity regarding its dim.6 truncation

