A Light Dilaton at the LHC

SAEREH NAHARI

Vrije Universiteit Brussel

WITH AQEEL AHMED AND ALBERTO MARIOTTI

TERASCALE MEETING, BRUSSELS, OCTOBER 17, 2019

A Light Dilaton: Motivation

- Electroweak Hierarchy Problem is one of the main theoretical motivations to go beyond the SM.
- One of the most studied and well motivated scenarios is the strongly interacting composite Higgs model.
 [Kaplan-Georgi,84']
- Composite Higgs models are holographic dual to the Randall-Sundrum (RS) like models in 5D warped extra dimensions.

[Randall-Sundrum,hep-ph/9905221] [Agashe-Contino-Pomarol,hep-ph/0412089]

A Light Dilaton: Motivation

lacktriangle However, the current LHC data puts strong constraints on the new physics (KK/composite modes, $m_{
m KK}\gtrsim 3$ TeV) in these models.

[CMS,1803.06292] [ATLAS,1804.10823]

- lacksquare If the KK modes are above $\mathcal{O}(5)$ TeV, they might be out of the LHC reach
- However, these strongly interacting theories may include a relatively light scalar, if the theory is approximately scale invariant.
- If the scale invariance is spontaneous broken at scale f then the corresponding (pseudo) Goldstone boson, the <u>dilaton</u>, may be much lighter than scale f.

A Light Dilaton: Motivation

- The dilaton mass, in general, is model dependent, i.e. it depends on the details of explicit breaking of the scale symmetry.
- It is argued that if the scale symmetry is explicitly broken by the operators which are very close to marginal, then the dilaton may remain light.
 [Contino-Pomarol-Rattazzi, talk by R. Rattazzi at Planck 2010, CERN]
 [Chacko-Mishra,1209.3022] [Bellazzini et al.,1209.3299] [Coradeschi et al.,1306.4601]
- For our phenomenological study we assume the dilaton mass is smaller than the spontaneous breaking scale, i.e. $m_{\phi} \ll f$.
- We consider dilaton in mass [10-300] GeV:
 - Below 10 GeV, there are generically constrained by flavour physics experiments.
 - ▶ Above 300 GeV, there are many studies in the literature.

[see e.g. Ahmed et al.,1512.05771]

Effective theory of a dilaton

After EWSB the effective Lagrangian for the Higgs-dilaton system

$$\begin{split} \mathcal{L}_{\text{eff}}^{(2)} = & \frac{1}{2} \partial_{\mu} h_0 \partial^{\mu} h_0 + \frac{c_{\text{K}}'}{2} \partial_{\mu} \phi_0 \partial^{\mu} \phi_0 - \frac{1}{2} m_{h_0}^2 h_0^2 - \frac{1}{2} m_{\phi_0}^2 \phi_0^2 \\ & - c_{\text{K}} \partial_{\mu} h_0 \partial^{\mu} \phi_0 - c_{\text{M}} m_{\phi_0}^2 h_0 \phi_0 \end{split}$$

- The $c_{\rm K}$ and $c_{\rm M}$ are the kinetic and mass mixings. The $c_{\rm K}'$ is a kinetic normalization coefficient.
- These mixings can be removed by rotating the scalar fields into the mass eigenstate basis (h,ϕ) :

$$\begin{pmatrix} \phi_0 \\ h_0 \end{pmatrix} = \frac{1}{Z} \begin{pmatrix} \cos \theta & -\sin \theta \\ Z \sin \theta + c_{\mathsf{K}} \cos \theta & Z \cos \theta - c_{\mathsf{K}} \sin \theta \end{pmatrix} \begin{pmatrix} \phi \\ h \end{pmatrix}$$

where $Z \equiv \sqrt{c_{\rm K}' - c_{\rm K}^2}$ and θ is the mixing angle.

Effective theory of a dilaton

- In the low energy theory, the scale invariance is non-linearly realized.
- Such that the dilaton interactions with the SM fields are fixed by the symmetries.

Dilaton interactions with SM fields

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{int}} = & \frac{\phi_0}{f} \Big[b_{\text{H}} \partial_{\mu} h_0 \partial^{\mu} h_0 - c_{\text{H}} m_{h_0}^2 h_0^2 - c_{\psi}^i m_{f_i} \bar{f}_i f_i + 2 c_{\text{W}} m_W^2 W_{\mu}^+ W^{-\mu} + c_{\text{Z}} m_Z^2 Z_{\mu} Z^{\mu} \\ & + b_{\gamma} F_{\mu\nu} F^{\mu\nu} + 2 b_{\text{W}} W_{\mu\nu}^+ W^{-\mu\nu} + b_{\text{Z}} Z_{\mu\nu} Z^{\mu\nu} + b_g G_{\mu\nu}^a G^{a\mu\nu} + 2 b_{\gamma\text{Z}} F_{\mu\nu} Z^{\mu\nu} \Big] \end{split}$$

- The coefficients b's and c's are model dependent.
- In the following, we consider two well motivated scenarios.

Models for a light dilaton

Bulk RS model

- RS model is 5D warped extra dimensional model with two branes, UV and IR.
- ► The low-energy effective 4D theory includes a radion with relatively small mass, which is identified as the dilaton in the holographic picture.
- ▶ Only the SM Higgs doublet and right-handed top quark are on the IR brane, i.e. they are composite, whereas, the remaining light fermions and gauge bosons are in the bulk or UV localized, i.e. elementary states.

[Csaki et al.,0705.3844] [Chacko et al.,1411.3758]

Anomalous Dilaton

► The dilaton interactions are only due to the running of gauge couplings, hence only interact to gauge boson kinetic terms.

Specific Models for the dilaton

	THE IVIOUEIS FOR	the unaton
couplings	bRS radion	anomalous dilaton
c_{K}	$6\frac{v}{f}\xi$	0
c_{K}'	$1 + 6\frac{v^2}{f^2}\xi$	1
c_{M}	0	0
$c_{\scriptscriptstyle \sf W}$	$1 - \frac{3\pi kR m_W^2}{f^2 (k/M_{\rm Pl})^2}$	0
c_{Z}	$1 - \frac{m}{f^2 (k/M_{\text{Pl}})^2} \\ 1 - \frac{3\pi kR m_Z^2}{f^2 (k/M_{\text{Pl}})^2}$	0
$b_{\sf w}$	$\frac{1}{4\pi kR}$	$rac{lpha}{8\pi s_W^2}b_2$
b_{Z}	$\frac{1}{4\pi kR}$	$\frac{\alpha}{8\pi t_W^2} (b_2 + b_Y t_W^4)$
b_{γ}	$\frac{1}{4\pi kR} + \frac{\alpha}{8\pi} (b_2 + b_Y)$	$\frac{\alpha}{8\pi}(b_2+b_Y)$
$egin{array}{c} b_{\gamma Z} \ b_{g} \ c_{\imath b}^{i} \end{array}$	$\frac{\alpha}{8\pi t_W}(b_2\!-\!b_Y t_W^2)$	$\frac{\alpha}{8\pi t_W}(b_2 - b_Y t_W^2)$
b_g	$\frac{1}{4\pi kR} + \frac{\alpha_s}{8\pi}b_3$	$\frac{\alpha_s}{8\pi}b_3$
c_{ν}^{i}	1	0

 ξ is the non-minimal coupling of Higgs to Ricci scalar, i.e. $\xi R|H|^2$. S.Najjari — A Light Dilaton at the LHC 7

b-coefficients of the SM gauge couplings

- The SM gauge coupling beta-function coefficients b_i are defined as, $\beta_i = b_i g_i^3/(16\pi^2)$.
- We parametrize contributions to the running of gauge couplings as:

$$b_i = b_i^{\mathrm{IR}} + b_i^{\mathrm{UV}}$$

where i = 3, 2, Y correspond to the SU(3), SU(2) and $U(1)_Y$.

In this talk, I will focus on

A

A case which includes no contribution from UV physics to gauge beta functions, such that $b_i^{UV}=0$ and $b_i=b_i^{IR}$, therefore

$$b_3 = -7$$
, $b_2 = -19/6$, $b_Y = 41/6$.

Dilaton portal to dark sector

The dilaton can provide a natural portal to dark sectors.

[Bai et al.,0909.1319] [Agashe et al.,0912.3070] [Blum et al.,1410.1873]

- We assume the scale invariance is non-linearly realized in the dark sector.
- The dilaton couple to mass/gauge kinetic terms of the dark sector fields.
- We consider the case where dark matter (DM) is the gauge boson of a dark $U(1)_X$ gauge symmetry.

DM and dilaton portal

$$\mathcal{L}_{\rm eff}^{\rm dark} \! = \! \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \! \frac{1}{2} m_X^2 X_{\mu} X^{\mu} + \frac{\phi_0}{f} \! \left[c_X m_X^2 X_{\mu} X^{\mu} + \frac{\alpha_X}{8\pi} b_X X_{\mu\nu} X^{\mu\nu} \right]$$

• We take $c_X = 1$ for bRS and $c_X = 0$ for anomalous case, and $\alpha_X = \frac{g_X^2}{4\pi}$. For later use, we define $\tilde{c}_X = \frac{\alpha_X}{8\pi} b_X$. S.Najjari — A Light Dilaton at the LHC 9 / 19

Dilaton Production Cross Section in bRS

- In the following, we consider the dilaton mass $m_{\phi} \in [10-300]$ GeV.
- The main production channel of the dilaton at the LHC is the ggF.

$$\phi \xrightarrow{k_1} g, \mu, a$$

$$i\delta^{ab} \frac{\alpha_s}{4\pi v} \left[\left(b_3 + \frac{2}{\alpha_s k R} + \frac{4}{3} \right) \bar{g}_\phi + \frac{4}{3} g_\phi \right] \left(\eta^{\mu\nu} k_1 \cdot k_2 - k_1^{\nu} k_2^{\mu} \right)$$

$$\text{where} \quad g_\phi = \sin\theta + 6\xi \frac{v \cos\theta}{f Z}, \qquad \tilde{g}_\phi = \frac{v \cos\theta}{f}, \qquad Z^2 \equiv 1 + 6\xi (1 - 6\xi) \frac{v^2}{f^2}$$

Dilaton searches at the LHC

- One of the main motivation to consider the phenomenology of a light dilaton in mass range $m_\phi \in [10-300]$ GeV is that this includes challenging region for various LHC searches which are at present not strongly constrained.
- In the following, we note that this mass range can be classified in three sub-divisions based on the experiment data.

$$R_1 \!=\! [10 \!\sim\! 60] \; \text{GeV}, \quad R_2 \!=\! [60 \!\sim\! 160] \; \text{GeV}, \quad R_3 \!=\! [160 \!\sim\! 300] \; \text{GeV}.$$

- R_1 covers mass range below $m_h/2$ where LHC has very limited searches and the LEP bounds would become very important.
- This is the mass range where LHC can improve their searches.
- The mass range R_2 is between $m_h/2$ and $2m_W$, and it is relatively much better covered at the LHC.
- For dilaton masses above $2m_W$, i.e. R_3 , the LHC puts stringent constraints due to di-boson searches. S.Najjari A Light Dilaton at the LHC 11 / 19

Branching Ratio of Dilaton in bRS

■ The branching fractions of the dilaton in the bulk RS for ξ = 0, without (left) and with (right) DM.

Branching Ratio of Dilaton in bRS

■ The branching fractions of the dilaton in the bulk RS for $\xi = 1/6$, without (left) and with (right) DM.

Exclusion bounds on dilaton in the bulk RS

- The parameter space of the dilaton in the bRS for $\xi = 0$, without (left) and with (right) DM.
- \blacksquare The scale f is the related to the KK masses $(m_{\rm KK}^{\rm LHC}\gtrsim 3~{\rm TeV})$ as:

$$f=\sqrt{rac{3}{2}}rac{M_{
m Pl}}{k}m_{
m KK}, \qquad k/M_{
m Pl}\lesssim 3 \; {
m [Naive \; Dimensional \; Analysis]}$$

Exclusion bounds on dilaton in the bulk RS

■ The parameter space of the dilaton in the bulk RS for $\xi = 1/6$, without (left) and with (right) DM.

Dilaton Anomalous Production Cross Section

The main production channel of the anomalous dilaton at the LHC is the ggF, where its coupling is:

$$g_{\phi gg} = \frac{\phi}{f} \frac{\alpha_s}{8\pi} b_3 G^a_{\mu\nu} G^{a,\mu\nu}$$
Anomalous Dilaton production at the LHC 13 TeV
$$-b_3 = 7$$

$$10^0$$

$$10^0$$

$$50$$

$$100$$

$$150$$

$$200$$

$$250$$

$$300$$

 $m_{\phi} [\text{GeV}]$

S.Najjari - A Light Dilaton at the LHC

Branching Ratio of Dilaton in Anomalous model

The branching fractions of the dilaton in the anomalous dilaton model, without (left) and with (right) DM.

Exclusion bounds on the anomalous dilaton

- The parameter space of the dilaton in the anomalous scenario, without (left) and with (right) DM.
- If the mass scale $\Lambda=4\pi f$, associated with the breaking of scale invariance is above 1 TeV, then $f\gtrsim 1/(4\pi)$.

Conclusions

- If BSM physics respects (approximate) scale/conformal invariance, the lightest observable state at the LHC may only be the dilaton.
- We explored a relatively light dilaton mass window at the LHC in two scenarios; bulk RS and anomalous dilaton.
- Dilaton can provide a natural portal to dark sectors.
- We consider a vector DM via the dilaton portal and looked for its signatures at the LHC in the mono-jet searches.
- The parameter space of these models are explored at the LHC incorporating all the current experimental data.