Stochastic Gravitational Waves from spin-3/2
fields

Gaétan Lafforgue-Marmet
LPTHE Sorbonne Université

17/10/2019

Karim Benakli, Yifan Chen, Peng Cheng, G. L.-M., arXiv : 1811.11774
IRN Terascale, Bruxelles



Introduction
®00

@ Today, we describe Nature using fundamental particles of spin
0, % 1 and 2. What about a spin % fundamental particle ?

@ In Minkowski space, it is well known that a minimally coupled
spin % field suffers from the "Velo and Zwanziger” problem :
The wave-front propagates faster than light ; loss of causality.

@ This issue is not simply solved by adding non minimal
couplings.

@ In a consistent theoretical frame, we are lead to assume that
spin % fundamental fields have only gravitational interactions.

@ Particles with only gravitational couplings are challenging to
detect.
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oeo

@ In 2016 we witnessed a major breakthrough in gravitational
astronomy with a first direct detection of Gravitational Waves
(GW).

o Can gravitational astronomy help us to learn about the
existence of elementary spin % particles 7

@ GW are produced by quadrupole moment of mass distribution:
binary system, out of equilibrium gases,...

@ Can we imagine a set-up where GWs can be produced by spin
% states 7 Would these GW carry a peculiar signature of their
origin ?



Introduction
ooe

@ Production of Gravitational Waves
© The GW spectrum in the Rarita-Schwinger case

© An example of production



Production of Gravitational Waves
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@ We use FLRW metric in conformal time 7
ds® = a*(7)[—d7? 4 (6; + hjj)dx'dx]

e Gravitational Waves (GW) production are governed by the
equation ) _
hij + 2Hhj; — Vh; = 167 GN T

@ We use the Transverse Traceless (TT) gauge, which is defined
by O'hjj =0 and h', = 0.

@ To have GW we need an out of equilibrium source:
non-adiabatically varying fields during preheating can produce
stochastic GW.

This is what we will consider here.
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@ It is more convenient to work in the Fourier space. Using the
comoving wave-number k, we can define the TT projector :

where k = ﬁ

@ Then the anisotropic stress energy tensor is
77 (k,t) = Ay m(k) (T (k, t) — Pg"™)

where P is the background pressure
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We will concentrate on the sub-horizon scale, ie k > H

“_167FG ‘ sin —Ma(HnlT /
h”_a(t)k/ dt'sin (k(t —t'))a(t)N; " (k,t")

ty

The energy density is given by

p= 5o (Rl Dbyl )

dpew 2Gk3 / / " NI I
= dt’ dt k(t' —t")N“(k,t', ¢t

dlogk — wa*(t a( t")cos[k(t Nk, £, 67)

N2(k,t', t") is the unequal-time correlator of I'I,-JT-T defined as

(N77(k, )NTTI(K ') = (27)*02 (k. £, )53 (k — K')
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@ The simplest way to build a spin % is to use a tensorial
product ¢ of spin 1 and %

@ we have the following decomposition

11 “ 10 1 1®1 71@1@3
2’2 2’7 ) 2 2) 27272

@ the two extra-spinors are eliminated by imposing the
constraints

7,u¢ﬂ =0
ot =0

3

@ We consider here a Majorana spin 35
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o A Lagrangian describing this field is the Rarita-Schwinger
Lagrangian

1 - 1 g
L= =5 P57 000 — 7 msjathu 1,710

@ The corresponding stress-energy tensor is

i- i-
Tij = 29uOpv" — 70"y + h.c
@ A well motivated fundamental spin % particle is the
superpartner of the graviton, the gravitino. It is also a good
candidate for Dark Matter.
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We consider the canonical quantization of spin % field

dp

se P Ao (1) + 81, b ()}

H(x, t) =
A=+3 il

~ 1 s3 A
ORI DI =N A= PPV
s=+1,/=+1,0

e’;, are the polarizations, uf,'f\i‘)(t) wave functions, xs(p)
two-component normalized eigenvectors of the helicity operator.
All the time dependence is in the wave functions.

ul7(e) = (O ), s ul (O] (p))



The GW spectrum in the Rarita-Schwinger case
[ele]eY Yololelele)

dpew 2Gk3 ,
dlogk 7T34 // I—ITT k t)I—ITTJ(k/ )>

o We first expand the product [1™(p, t)l1¥(q, t')

@ An average must be then taken on the product of creation
and annihilation operators

Among the 16 products, the only non-0 average is

<O‘a—p )\ak—i-p /@aT by ak/ ‘0>
(27)%6G) (k — wn&”w+p Q)0rn 0 — 0 (P + Q)Oxn G}

p=p+k
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We expect the £3/2 and £1/2 helicity to be produced differently.
Therefore, they come with different wave-functions

e helicity £3/2 wave-function

a0 = u3(0)

@ helicity +1/2 wave-function

(3)

- 2 1 (1)
H A g
wmi%(t) - \/;6,;,0 Up7i%(t) + \/;Ep,il Up72$%(t)

Thus, we separate the calculation into two parts, helicities
AN =243 and A, N =£3
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We expect the £3/2 and £1/2 helicity to be produced differently.
Therefore, they come with different wave-functions

e helicity £3/2 wave-function

a0 = u3(0)

1
2

@ helicity +1/2 wave-function

T _ 2 7 (%) 1 y (%)
o ()= 30t s (01 e an 0 (0

Thus, we separate the calculation into two parts, helicities
AN =43 and A\, N =£3

Note that the longitudinal polarization 6:)1‘0 appears in the helicity
+1 ’
5
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e . 13
@ In the relativistic regime we have e/ ; o« 2— + ...
P, ms3 /o

@ This implies that the production of the helicity :l:% s
enhanced compare to the j:%.

We focus on the leading contribution

1 1 1 1y,
Mkt = o0z [ apdt Kok b ma W OW ()
PP m3 /3

With a kinematic factor (p’ = p + k)

K (p, k, 0, ms5) = =—5—p*p sin 6{(cosf — cost’)?

36m 3/2

4,00 ey
+ 4sin”( )(1+sinfsinf")} +

and a wave-function factor

Al)(t) (W)(t)u(')\‘j(t)

W () = {3V () w8y

k,p
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e e e . 1
@ In the relativistic regime we have €/, oc 22— + ...
p,0 ms3 /o

@ This implies that the production of the helicity :l:% is
enhanced compare to the i%.

We focus on the leading contribution

1 1 1 1y,
|_|2%(k,1.“7 t’)g 2771_2/ . dp df K(i)(p'k’e’m3/2)Wk,§))(t)Wk(j,) (t/)
p,p'>m3

With a kinematic factor (p’ = p + k)

1 1
KG)(p, k0, ms)) = =————p*p’® sin 0{(cos — cosh’)?
1% 36m2
4,00 oy
+ 4sin”( J(1+sinfsind)}+ ...

Note the k? enhancement factor from the p’?, leading to an overall k®
dependence of the spectrum density per logarithm of frequency of the
GW energy.
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7 pt
p,0 X ms —+ ...

@ In the relativistic regime we have €
@ This implies that the production of the helicity :I:% is

enhanced compare to the i%.
We focus on the leading contribution
1 4
dpd9 K\z2 (p k, 9, m3/2)
p,p'>m3

k,t,t) ~ —
(k;t,t) 272

I W(%)(t)W(z)*(t/)
P k,p

o= N

Note the wave-function factor

A A A A A
W () = w20 (@)u V() — w2 () (e)

This wave-function factor can only be computed in specific model.
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A model to give an example of the wave-function factor.

Polonyi Model inflaton plus a scalar field z

4
K=z - EL w2z o,

An estimate of the mass order near the minimum is

12 m3/2MPI

5 my, >~ 2\[
V3Mp

we require A < Mp; and m; > mgz 5.

@ We assume that the F = \/§m3/zl\/lp/ term of z does not
contribute to the Hubble expansion but is large enough to
lead to a gravitino mass that satisfies

7—[<<m3/2<mz
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@ The wave-function satisfies the Dirac equation

. . u
[17080 —amz;+ (A+ /Bvo)p -] <u+> =0
@ We assume as an initial condition that the occupation number
vanishes.

e This equation is similar to the production of the spin 1/2 from
a Yukawa coupling to an oscillating scalar with a quadratic

2
potential. The effective Yukawa coupling is y = % and the
oscillation is described by a source term
@(t) _ am?éz _ am?sz

- _2\/§m3/2Mp/ - 2F
@ The fermion production in this case fill up a Fermi sphere with
comoving radius

ke ~ (a/a))Y*q**m, g= Y
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@ The peak of the GW is reached at the Fermi sphere radius, and has a
frequency given by
1
f,~6-10"y2Hz
@ The amplitude is given by

fp )12(i 2

2 ~2.10-10
h* Qew(f,) ~3-10 (6~101°Hz oy

h2Qgw
ZL
1079 my
S 1014
10714
10M
10719 108
10°
10724
— 107
-29
10 [ fo(H2)

1x108 5x108  1x10° 5x10° 1x1010



Concl
.

@ GW might be produced during preheating of the Universe

from a non adiabatic gas of spin % fields. They will appear as

a bump on top of the stochastic GW signal with a peculiar
frequency dependence.

@ Though they share some features with GW produced by fields
of different spins, they exhibit some important differences. For
instance, if the GW spectrum produced by the spin 3/2 is
close to the spin 1/2 case, there is two main differences :

ke

’"g/z

o A k® dependence near the peak, due to the apparition of k in
the N77

e An enhancement by a factor

@ A bump shows up at high frequency. Improvements of the
sensitivity of experiments at such frequencies, searching
mainly for axions for example, is needed to look for these GW.
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@ we can compute the TT Stress-Energy tensor

]. ~ dp A
TT — A Im
I_IU (k’ t) - 4Au,lm(k)/ (271')3 {n (p, t) + h.C.}7

@ k is the momentum mode of the GW

o M'™ is expressed in terms of 4 and 1)
ﬁ""(p, t) = [ip,ﬂz,’ii + 5:)7)\ :g,/\} AU em) «
[§p+k,>\’7,5up+k7>\/ + §T,p,k7,\/7z,fp+k,,\/}
— [apadtS + 2, 1,

A 7m) At *m)C
|:aP+k7)\/¢p+k,X +a o kv Ptk | -



@ Putting the non-0 average in the product gives
dp rot ’
2 no_ (IAD) As,\'s (A1)
(k. t.6) =2 [ 0 |8 )0
ol

r
’2

2
Y |) Ar X! (
[ (¢) AN (Yl

p72

° V(\/\I) _ ,,Yovzulx\\
P:3

@ A is defined by
1 1 s3 1,43

A1) = S Njm(L. 15 X)X

! / /
{QEMPJG:;/,H P( ’Ym) - GMPJPIMGE,/J/’Y”’) - Eup’,r’Pung'}’m)}



helicity +3/2

@ Using the decomposition of helicity £3/2 we get

3 5y,
Mk tt)= 50 /dpde KO(p, k.0, ms7) W ()Wep" (¢

6(¢') is the angle between k and p(p’)

K3(p, k.0, msp) = p>k*{5sin> Osin> ¢’ + sin*(6 — 6) sin 6}
+ 4p*sin* Osin ¢’

@ all the wave-function dependance is in W

Wk(,‘;\l)( t) = |>\\ ity (W)( t) — |>\| (t)u |>\\ D(r)



helicity £1/2

@ presence of ¢g and €41
@ In the relativistic regime we have

o= ——(p\ /2 M p)x Lt
p.0 my 3/2 m3 )2

@ The main contribution is with two ¢g

M3 (k,t,t) =
2

—_

1 1 Ly
gz [ kot myz) W (0W ()
p,p°>m3 />

K(%)(p, k,0,ms3,) = p*p’ sin 0{(cosh) — cosh')?

36m§/2
_

b )(1+sinfsing)} +...

0
+ 4sin*(



In the relativistic regime, helicity +1/2 production is enhanced
compare to j:%.

dpew
k,t) ~
dlogk( )

Gk3 1
7_‘_3‘14(t_)/CIPC/QI{(;)(pa kaea m3/2) {|IC(kap79> t)‘2+|ls(kaP79» t)|2}a

/

a(t’)
t / (l)
(ke p.0.0) = [ < sin(he) Wi ()

t 1
Ic(k,p,0,t) = /t cos(kt') Wk(j))(t/),



@ In order to compute the GW spectrum, we need the evolution
of the wave-function up +(t).

@ the equation of motion is given by
[17°00 — ams2 + (A+iBy°)p 7] <Z+> =0,

@ initial condition : wup 4+ satisfies the vanishing occupation
number condition .

@ we take the momentum p to lie along the z direction.

A+iB = exp <2i/@(t)dt) f(t)r =exp <$i/@(t)dt> Uy
@ the equation of motion becomes

fr +[p?+(©+ m3/23)2 +i(0+ ms)pa)lfs = 0.



@ Polonyi model of inflation, z Polonyi field

= | |2_ﬁ
= R
W = i’z + W,

@ An estimate of the mass order near the minimum is

e m3 oM
VV20’ m, ~ 2v/3T32MP 3/2 Pl
\[MPI Mp,
@ Requiring A < Mp; leads to m; > ms 5.

@ We assumed that the F term of z does not contribute to the
Hubble expansion but is large enough to lead to a gravitino
mass that satisfies

H K ms3 ;2 < My,



@ We are in the sub-horizon limit : we can apply all the previous
calculation.

@ Polonyi model contains a nontrivial source term O(t) to
produce helicity-1/2 gravitino,

2 2
amz0z _am3zéz

Oft)=———2-" = :
( ) 2\/§m3/2/\/lp/ 2F

@ 0z = z — zy is the displacement of z from its value zp at the
minimum of the the scalar potential and F = \/§m3/2Mp/ is
the supersymmetry breaking scale.

@ The coupling between this source term and the gravitino is
given by

am§52)2 .am26z
oF ) T'ToF

fli+[k2+(am3/2— ]fi:O



e This equation is similar to the production of the spin 1/2 from
a quadratic scalar with a Yukawa coupling.

@ The effective Yukawa coupling is

2
my

Y =3F
@ The fermion production in this case fill up a fermi sphere with
comoving radius

~2

Yy z
kF ~ (a/a/)l/4q1/4mza q m2 )
z

il o)

@ The peak of the GW is reached at this radius, and has a
frequency given by

f, ~ 610072 Hz.
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