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17/10/2019

Karim Benakli, Yifan Chen, Peng Cheng, G. L.-M., arXiv : 1811.11774
IRN Terascale, Bruxelles



Introduction Production of Gravitational Waves The GW spectrum in the Rarita-Schwinger case An example of production Conclusion back-up

Today, we describe Nature using fundamental particles of spin
0, 1

2 , 1 and 2. What about a spin 3
2 fundamental particle ?

In Minkowski space, it is well known that a minimally coupled
spin 3

2 field suffers from the ”Velo and Zwanziger” problem :
The wave-front propagates faster than light ; loss of causality.

This issue is not simply solved by adding non minimal
couplings.

In a consistent theoretical frame, we are lead to assume that
spin 3

2 fundamental fields have only gravitational interactions.

Particles with only gravitational couplings are challenging to
detect.
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In 2016 we witnessed a major breakthrough in gravitational
astronomy with a first direct detection of Gravitational Waves
(GW).

Can gravitational astronomy help us to learn about the
existence of elementary spin 3

2 particles ?

GW are produced by quadrupole moment of mass distribution:
binary system, out of equilibrium gases,...

Can we imagine a set-up where GWs can be produced by spin
3
2 states ? Would these GW carry a peculiar signature of their
origin ?
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We use FLRW metric in conformal time τ

ds2 = a2(τ)[−dτ2 + (δij + hij)dx
idx j ]

Gravitational Waves (GW) production are governed by the
equation

ḧij + 2Hḣij −∇hij = 16πGΠTT
ij

We use the Transverse Traceless (TT) gauge, which is defined
by ∂ihij = 0 and hii = 0.

To have GW we need an out of equilibrium source:
non-adiabatically varying fields during preheating can produce
stochastic GW.
This is what we will consider here.



Introduction Production of Gravitational Waves The GW spectrum in the Rarita-Schwinger case An example of production Conclusion back-up

It is more convenient to work in the Fourier space. Using the
comoving wave-number k, we can define the TT projector :

Λij ,lm(k̂) ≡ Pil(k̂)Pjm(k̂)−1

2
Pij(k̂)Plm(k̂) Pij(k̂) = δij−k̂i k̂j

where k̂ ≡ k
|k|

Then the anisotropic stress energy tensor is

ΠTT
ij (k, t) = Λij ,lm(k̂)(T lm(k, t)− Pg lm)

where P is the background pressure
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We will concentrate on the sub-horizon scale, ie k � H

hij =
16πG

a(t)k

∫ t

tI

dt ′sin
(
k(t − t ′)

)
a(t ′)ΠTT

ij (k , t ′)

The energy density is given by

ρ =
1

32πG

〈
ḣij(x, t)ḣij(x, t)

〉
dρGW
d logk

=
2Gk3

πa4(t)

∫ t

tI

dt ′
∫ t

tI

dt ′′a(t ′)a(t ′′)cos[k(t ′ − t ′′)]Π2(k, t ′, t ′′)

Π2(k , t ′, t ′′) is the unequal-time correlator of ΠTT
ij defined as

〈ΠTT
ij (k, t)ΠTTij(k′, t ′)〉 ≡ (2π)3Π2(k , t, t ′)δ(3)(k− k′)
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The simplest way to build a spin 3
2 is to use a tensorial

product ψαµ of spin 1 and 1
2

we have the following decomposition(
1

2
,

1

2

)
⊗
(

1

2
, 0

)
=

1

2
⊕
(

1⊗ 1

2

)
=

1

2
⊕ 1

2
⊕ 3

2

the two extra-spinors are eliminated by imposing the
constraints

γµψ
µ = 0

∂µψ
µ = 0

We consider here a Majorana spin 3
2
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A Lagrangian describing this field is the Rarita-Schwinger
Lagrangian

L = −1

2
εµνρσψ̄µγ5γν∂ρψσ −

1

4
m3/2ψ̄µ [γµ, γν ]ψν

The corresponding stress-energy tensor is

Tij =
i

4
ψ̄µγ(i∂j)ψ

µ − i

4
ψ̄µγ(i∂

µψj) + h.c

A well motivated fundamental spin 3
2 particle is the

superpartner of the graviton, the gravitino. It is also a good
candidate for Dark Matter.
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We consider the canonical quantization of spin 3
2 field

ψµ(x, t) =
∑

λ=± 3
2
,± 1

2

∫
dp

(2π)3
e−ip·x{âp,λψ̃µp,λ(t) + â†−p,λψ̃

µC
p,λ(t)}

ψ̃µp,λ(t) =
∑

s=±1,l=±1,0

〈1, 1

2
, l ,

s

2
|3
2
, λ〉εµp,lu

(|λ|)
p, s

2
(t)

εµp,l are the polarizations, u
(|λ|)
p,± (t) wave functions, χs(p)

two-component normalized eigenvectors of the helicity operator.
All the time dependence is in the wave functions.

u
(|λ|)T
p, s

2
(t) = (u

(|λ|)
p,+ (t)χT

s (p), s u
(|λ|)
p,− (t)χT

s (p))
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dρGW
d logk

∼ 2Gk3

πa4(t)

∫ ∫
· · · 〈ΠTT

ij (k, t ′)ΠTTij(k′, t ′′)〉

We first expand the product Π̂lm(p, t)Π̂ij(q, t ′)

An average must be then taken on the product of creation
and annihilation operators

Among the 16 products, the only non-0 average is

〈0|â−p,λâk+p,κâ
†
q,λ′ â

†
k′−q,κ′ |0〉 =

(2π)6δ(3)(k− k′){δ(3)(k + p− q)δλ,κ′δκ,λ′ − δ(3)(p + q)δλ,λ′δκ,κ′}

p′ = p + k
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We expect the ±3/2 and ±1/2 helicity to be produced differently.
Therefore, they come with different wave-functions

helicity ±3/2 wave-function

ψ̃µ
p,± 3

2

(t) = εµp,±1 u
(3/2)

p,± 1
2

(t)

helicity ±1/2 wave-function

ψ̃µ
p,± 1

2

(t) =

√
2

3
εµp,0 u

( 1
2

)

p,± 1
2

(t) +

√
1

3
εµp,±1 u

( 1
2

)

p,∓ 1
2

(t)

Thus, we separate the calculation into two parts, helicities
λ, λ′ = ±3

2 and λ, λ′ = ±1
2
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We expect the ±3/2 and ±1/2 helicity to be produced differently.
Therefore, they come with different wave-functions

helicity ±3/2 wave-function

ψ̃µ
p,± 3

2

(t) = εµp,±1 u
(3/2)

p,± 1
2

(t)

helicity ±1/2 wave-function

ψ̃µ
p,± 1

2

(t) =

√
2

3
εµp,0 u

( 1
2

)

p,± 1
2

(t) +

√
1

3
εµp,±1 u

( 1
2

)

p,∓ 1
2

(t)

Thus, we separate the calculation into two parts, helicities
λ, λ′ = ±3

2 and λ, λ′ = ±1
2

Note that the longitudinal polarization εµp,0 appears in the helicity

±1
2 .
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In the relativistic regime we have εµp,0 ∝
pµ

m3/2
+ . . .

This implies that the production of the helicity ±1
2 is

enhanced compare to the ±3
2 .

We focus on the leading contribution

Π2
1
2
(k, t, t ′) ' 1

2π2

∫
p,p′�m3/2

dp dθ K ( 1
2 )(p, k , θ,m3/2)W

( 1
2 )

k,p (t)W
( 1

2 )∗
k,p (t ′)

With a kinematic factor (p′ = p + k)

K ( 1
2 )(p, k, θ,m3/2) =

1

36m2
3/2

p4p′2 sin θ{(cosθ − cosθ′)2

+ 4 sin4(
θ − θ′

2
)(1 + sin θ sin θ′)}+ . . .

and a wave-function factor

W
(|λ|)
k,p (t) = u

(|λ|)
p,+ (t)u

(|λ|)
p′,+ (t)− u

(|λ|)
p,− (t)u

(|λ|)
p′,−(t)
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In the relativistic regime we have εµp,0 ∝
pµ

m3/2
+ . . .

This implies that the production of the helicity ±1
2 is

enhanced compare to the ±3
2 .

We focus on the leading contribution

Π2
1
2
(k, t, t ′) ' 1

2π2

∫
p,p′�m3/2

dp dθ K ( 1
2 )(p, k , θ,m3/2)W

( 1
2 )

k,p (t)W
( 1

2 )∗
k,p (t ′)

With a kinematic factor (p′ = p + k)

K ( 1
2 )(p, k, θ,m3/2) =

1

36m2
3/2

p4p′2 sin θ{(cosθ − cosθ′)2

+ 4 sin4(
θ − θ′

2
)(1 + sin θ sin θ′)}+ . . .

Note the k2 enhancement factor from the p′2, leading to an overall k5

dependence of the spectrum density per logarithm of frequency of the
GW energy.
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In the relativistic regime we have εµp,0 ∝
pµ

m3/2
+ . . .

This implies that the production of the helicity ±1
2 is

enhanced compare to the ±3
2 .

We focus on the leading contribution

Π2
1
2
(k, t, t ′) ' 1

2π2

∫
p,p′�m3/2

dp dθ K ( 1
2 )(p, k , θ,m3/2)W

( 1
2 )

k,p (t)W
( 1

2 )∗
k,p (t ′)

Note the wave-function factor

W
(|λ|)
k,p (t) = u

(|λ|)
p,+ (t)u

(|λ|)
p′,+ (t)− u

(|λ|)
p,− (t)u

(|λ|)
p′,−(t)

This wave-function factor can only be computed in specific model.
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A model to give an example of the wave-function factor.

Polonyi Model inflaton plus a scalar field z

K = |z |2 − |z |
4

Λ2
W = µ2z +W0,

An estimate of the mass order near the minimum is

m3/2 '
µ2

√
3MPl

mz ' 2
√

3
m3/2MPl

Λ

we require Λ < MPl and mz > m3/2.

We assume that the F =
√

3m3/2MPl term of z does not
contribute to the Hubble expansion but is large enough to
lead to a gravitino mass that satisfies

H � m3/2 < mz
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The wave-function satisfies the Dirac equation

[iγ0∂0 − am3/2 + (A + iBγ0)p · γ]

(
u+

u−

)
= 0

We assume as an initial condition that the occupation number
vanishes.

This equation is similar to the production of the spin 1/2 from
a Yukawa coupling to an oscillating scalar with a quadratic

potential. The effective Yukawa coupling is ỹ = m2
z

2F and the
oscillation is described by a source term

Θ(t) = − am2
zδz

2
√

3m3/2MPl
= − am2

zδz
2F

The fermion production in this case fill up a Fermi sphere with
comoving radius

kF ∼ (a/aI )
1/4q1/4mz q ≡ ỹ2z2

I

m2
z
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The peak of the GW is reached at the Fermi sphere radius, and has a
frequency given by

fp ' 6 · 1010ỹ
1
2 Hz

The amplitude is given by

h2ΩGW (fp) ' 3 · 10−10(
fp

6 · 1010Hz
)12(

zI
mz

)2

1×108 5×108 1×109 5×109 1×1010
fp (Hz)

10-29

10-24

10-19

10-14

10-9

h2ΩGW

zI

mz

1014

1011

108

105

102
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GW might be produced during preheating of the Universe
from a non adiabatic gas of spin 3

2 fields. They will appear as
a bump on top of the stochastic GW signal with a peculiar
frequency dependence.

Though they share some features with GW produced by fields
of different spins, they exhibit some important differences. For
instance, if the GW spectrum produced by the spin 3/2 is
close to the spin 1/2 case, there is two main differences :

An enhancement by a factor kF
m2

3/2

A k5 dependence near the peak, due to the apparition of k in
the ΠTT

A bump shows up at high frequency. Improvements of the
sensitivity of experiments at such frequencies, searching
mainly for axions for example, is needed to look for these GW.



Introduction Production of Gravitational Waves The GW spectrum in the Rarita-Schwinger case An example of production Conclusion back-up



Introduction Production of Gravitational Waves The GW spectrum in the Rarita-Schwinger case An example of production Conclusion back-up

Back-up slides
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we can compute the TT Stress-Energy tensor

ΠTT
ij (k, t) =

1

4
Λij ,lm(k̂)

∫
dp

(2π)3
{Π̂lm(p, t) + h.c.},

k is the momentum mode of the GW

Πlm is expressed in terms of â and ψ

Π̂lm(p, t) =
[
â−p,λ

¯̃ψµCp,λ + â†p,λ
¯̃ψµp,λ

]
γ(l∂m)×[

âp+k,λ′ψ̃µp+k,λ′ + â†−p−k,λ′ψ̃
C
µp+k,λ′

]
−
[
â−p,λ

¯̃ψµCp,λ + â†p,λ
¯̃ψµp,λ

]
γ((l∂µ×[

âp+k,λ′ψ̃
m)
p+k,λ′ + â†−p−k,λ′ψ̃

m)C
p+k,λ′

]
.
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Putting the non-0 average in the product gives

Π2(k , t, t ′) = 2

∫
dp

(2π)3

[
v̄

(|λ|)
p, s

2
(t)∆λs,λ′s′

ij (t)u
(|λ′|)
p′, s
′

2

(t)

]
×[

ū
(|λ′|)
p′, r
′

2

(t ′)∆λr ,λ′r ′

ij (t ′)∗v
(|λ|)
p, r

2
(t ′)

]
,

v
(|λ|)
p, r

2
= iγ0γ2ū

|λ|T
p, r

2

∆ is defined by

∆λs,λ′s′

ij (t) =
1

4
Λij ,lm〈1,

1

2
, r ,

s

2
|3
2
, λ〉〈1, 1

2
, r ′,

s ′

2
|3
2
, λ′〉×

{2εµp,r εµp′,r ′ p
(lγm) − εµp,rp′µε(l

p′,r ′γ
m) − εµp′,r ′pµε

(l
p,rγ

m)}
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helicity ±3/2

Using the decomposition of helicity ±3/2 we get

Π2
3
2
(k , t, t ′) =

1

32π2

∫
dp dθ K ( 3

2
)(p, k , θ,m3/2) W

( 3
2

)

k,p (t)W
( 3

2
)∗

k,p (t ′),

θ(θ′) is the angle between k and p(p′)

K ( 3
2

)(p, k , θ,m3/2) = p2k2{5 sin3 θ sin2 θ′ + sin2(θ − θ′) sin θ}
+ 4p4 sin4 θ sin θ′

all the wave-function dependance is in W

W
(|λ|)
k,p (t) = u

(|λ|)
p,+ (t)u

(|λ|)
p′,+(t)− u

(|λ|)
p,− (t)u

(|λ|)
p′,−(t)
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helicity ±1/2

presence of ε0 and ε±1

In the relativistic regime we have

εµp,0 =
1

m3/2
(p,
√
p2 + m2

3/2p̂) ∝ pµ

m3/2
+ . . .

The main contribution is with two ε0

Π2
1
2
(k , t, t ′) '

1

2π2

∫
p,p′�m3/2

dp dθK ( 1
2

)(p, k , θ,m3/2) W
( 1

2
)

k,p (t)W
( 1

2
)∗

k,p (t ′)

K ( 1
2

)(p, k , θ,m3/2) =
1

36m2
3/2

p4p′2 sin θ{(cosθ − cosθ′)2

+ 4 sin4(
θ − θ′

2
)(1 + sin θ sin θ′)}+ . . .
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In the relativistic regime, helicity ±1/2 production is enhanced
compare to ±3

2 .

dρGW
d logk

(k, t) '

Gk3

π3a4(t)

∫
dp dθK ( 1

2
)(p, k, θ,m3/2) {|Ic(k , p, θ, t)|2 + |Is(k , p, θ, t)|2},

Ic(k , p, θ, t) =

∫ t

ti

dt ′

a(t ′)
cos(kt ′)W

( 1
2

)

k,p (t ′),

Is(k , p, θ, t) =

∫ t

ti

dt ′

a(t ′)
sin(kt ′)W

( 1
2

)

k,p (t ′)
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In order to compute the GW spectrum, we need the evolution
of the wave-function up,±(t).

the equation of motion is given by

[iγ0∂0 − am3/2 + (A + iBγ0)p · γ]

(
u+

u−

)
= 0,

initial condition : up,± satisfies the vanishing occupation
number condition .

we take the momentum p to lie along the z direction.

A+iB = exp

(
2i

∫
Θ(t)dt

)
f (t)± = exp

(
∓i
∫

Θ(t)dt

)
u±

the equation of motion becomes

f̈± + [p2 + (Θ + m3/2a)2 ± i(Θ̇ + ˙m3/2a)]f± = 0.
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Polonyi model of inflation, z Polonyi field

K = |z |2 − |z |
4

Λ2
,

W = µ2z +W0,

An estimate of the mass order near the minimum is

m3/2 '
µ2

√
3MPl

' W0

M2
Pl

, mz ' 2
√

3
m3/2MPl

Λ
.

Requiring Λ < MPl leads to mz > m3/2.

We assumed that the F term of z does not contribute to the
Hubble expansion but is large enough to lead to a gravitino
mass that satisfies

H � m3/2 < mz ,
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We are in the sub-horizon limit : we can apply all the previous
calculation.

Polonyi model contains a nontrivial source term Θ(t) to
produce helicity-1/2 gravitino,

Θ(t) = − am2
zδz

2
√

3m3/2MPl

= −am2
zδz

2F
,

δz = z − z0 is the displacement of z from its value z0 at the
minimum of the the scalar potential and F =

√
3m3/2MPl is

the supersymmetry breaking scale.

The coupling between this source term and the gravitino is
given by

f̈± + [k2 + (am3/2 −
am2

zδz

2F
)2 ∓ i

am2
z δ̇z

2F
]f± = 0.
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This equation is similar to the production of the spin 1/2 from
a quadratic scalar with a Yukawa coupling.

The effective Yukawa coupling is

ỹ =
m2

z

2F
.

The fermion production in this case fill up a fermi sphere with
comoving radius

kF ∼ (a/aI )
1/4q1/4mz , q ≡

ỹ2z2
I

m2
z

,

The peak of the GW is reached at this radius, and has a
frequency given by

fp ' 6 · 1010ỹ
1
2Hz.
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