The two-body potential in modified gravity

Adrien Kuntz

Arxiv:1905.07340

PhD student in CPT Marseille Supervisor : Federico Piazza

Dark energy meeting, IAP 20/05/2019

Modified gravity should incorporate screening in order to recover GR on solar system scales

Modified gravity should incorporate screening in order to recover GR on solar system scales

Spherically symmetric screening

Take the simplest screening :
$$S = \int d^4x \left[-\frac{(\partial\phi)^2}{2} - \frac{1}{4\Lambda^4} (\partial\phi)^4 + \frac{\phi T}{M_P} \right]$$
 (K-Mouflage)

Spherically symmetric screening

Take the simplest screening : $\tilde{S} = \int dt d^3x \left[-\frac{1}{2} (\nabla \tilde{\phi})^2 - \frac{1}{4} (\nabla \tilde{\phi})^4 + \tilde{\phi} \tilde{T} \right]$ (K-Mouflage)

$$\phi' + (\phi')^3 = \frac{M}{r^2}$$

Spherically symmetric screening

Take the simplest screening : $\tilde{S} = \int dt d^3x \left[-\frac{1}{2} (\nabla \tilde{\phi})^2 - \frac{1}{4} (\nabla \tilde{\phi})^4 + \tilde{\phi} \tilde{T} \right]$ (K-Mouflage)

$$\phi' + (\phi')^3 = \frac{M}{r^2}$$

$$\Rightarrow \phi(r) = -\frac{M}{r} {}_{3}F_{2}\left(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}; \frac{5}{4}, \frac{3}{2}; -\frac{27M^{2}}{4r^{4}}\right)$$

$$\phi(r) = 3(Mr)^{1/3} + \dots$$
 $\phi(r) = -\frac{M}{r} + \frac{M^3}{5r^5} + \dots$

Modified gravity should incorporate screening in order to recover GR on solar system scales

Still small-scale tests of GR are very precise!

Modified gravity should incorporate screening in order to recover GR on solar system scales

Still small-scale tests of GR are very precise!

Modified gravity should incorporate screening in order to recover GR on solar system scales

Still small-scale tests of GR are very precise!

$$\tilde{S} = \int dt d^3x \left[-\frac{1}{2} (\nabla \tilde{\phi})^2 - \frac{1}{4} (\nabla \tilde{\phi})^4 + \tilde{\phi} \tilde{T} \right]$$

$$\tilde{T} = -m_1 \delta^3(\mathbf{x} - \mathbf{x}_1) - m_2 \delta^3(\mathbf{x} - \mathbf{x}_2)$$

$$\tilde{S} = \int dt d^3x \left[-\frac{1}{2} (\nabla \tilde{\phi})^2 - \frac{1}{4} (\nabla \tilde{\phi})^4 + \tilde{\phi} \tilde{T} \right]$$

$$e^{iS_{\text{cl}}[\mathbf{x}_1,\mathbf{x}_2]} = \int \mathscr{D}[\phi] e^{iS[\mathbf{x}_1,\mathbf{x}_2,\phi]}$$

$$\tilde{S} = \int dt d^3x \left[-\frac{1}{2} (\nabla \tilde{\phi})^2 - \frac{1}{4} (\nabla \tilde{\phi})^4 + \tilde{\phi} \tilde{T} \right]$$

$$\int dt E = -S_{cl} \Rightarrow E = -\frac{m_1 m_2}{r} + \frac{m_1 m_2 (m_1^2 + m_2^2)}{5r^5} + \dots$$

$$E = -\frac{m_1 m_2}{r} + \frac{m_1 m_2 (m_1^2 + m_2^2)}{5r^5} + \dots$$

$$E_{\text{tm}} = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} + \dots \right)$$

$$\frac{E_{\rm tm}}{E_N} - 1 = -\frac{M^2}{5r^4} + \dots \ll 1$$

$$E_{tm} = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} + \dots \right)$$

$$F_{\phi}$$
 F_{ϕ}

$$E = -\frac{m_1 m_2}{r} + \frac{m_1 m_2 (m_1^2 + m_2^2)}{5r^5} + \dots$$

$$\begin{array}{c}
M \\
F_{\phi} \\
\bullet
\end{array}$$

$$E_{\rm tm} = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} + \dots \right)$$

$$F_{\phi}$$
 F_{ϕ}

$$E = -\frac{m_1 m_2}{r} + \frac{m_1 m_2 (m_1^2 + m_2^2)}{5r^5} + \dots$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$M = m_1 + m_2$$

$$x = \frac{m_1}{m_1 + m_2}$$

$$= \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} (x^2 + (1-x)^2) + \dots \right)$$

The two-body energy is a deformation of the test-mass energy

Energy map outside

Idea : resum nonlinearities by using only $E_{\it tm}$

$$E_{\text{tm}} = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} + \dots \right) \quad E = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} (x^2 + (1-x)^2) + \dots \right)$$

Energy map outside

Idea : resum nonlinearities by using only $E_{\it tm}$

$$E_{\rm tm} = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} + \dots \right) \quad E = \mu \left(-\frac{M}{r} + \frac{M^3}{5r^5} (x^2 + (1-x)^2) + \dots \right)$$

$$\frac{E}{E_{tm}} = 1 + \frac{M^2}{5r^4} \left(1 - x^2 - (1 - x)^2 \right) + \dots$$

$$\frac{E}{E_{\text{tm}}} = a_0 + a_1 \left(\frac{E_{\text{tm}}}{E_N} - 1\right) + a_2 \left(\frac{E_{\text{tm}}}{E_N} - 1\right)^2 + \dots$$

$$\frac{E_{\rm tm}}{E_N} - 1 = -\frac{M^2}{5r^4} + \dots \ll 1$$
 is itself a resummed expansion in $\frac{1}{r}$

Inside the nonlinear radius

$$E_{\rm tm} = 3\mu \, (Mr)^{1/3} + \dots$$

Inside the nonlinear radius

Inside the nonlinear radius

Idea: Postulate that the energy map is valid inside

$$\frac{E}{E_{\text{tm}}} = b_0 + b_1 \left(\frac{E_{\text{tm}}}{E_{\text{ref}}} - 1\right) + b_2 \left(\frac{E_{\text{tm}}}{E_{\text{ref}}} - 1\right)^2 + \dots$$

One cannot compute the b_i 's, but one can get them with a numerical simulation !

EP violation

The Moon is a test-mass:

$$\overrightarrow{F}_{M} \simeq m_{M} \overrightarrow{\nabla} \phi_{S}(r)$$
 and $\overrightarrow{F}_{M} = m_{M} \overrightarrow{a}_{M}$

 $\Rightarrow \overrightarrow{a}_M = \overrightarrow{\nabla} \phi_S(r)$ does not depend on m_M

EP violation

The Earth is not a test-mass:

$$\overrightarrow{F}_E \simeq m_E b_0(x_{SE}) \overrightarrow{\nabla} \phi_S(r)$$
 and $\overrightarrow{F}_E = m_E \overrightarrow{a}_E$

$$\overrightarrow{F}_E = m_E \overrightarrow{a}_E$$

$$\Rightarrow \vec{a}_E = b_0(x_{SE}) \vec{\nabla} \phi_S(r)$$
 depends on x_{SE} !!

The Sun-Earth-Moon system

$$\delta r_{EM} \simeq 3 \times 10^{12} \left| (b_0(x_{SE}) - 1) \left(\frac{r}{r_*}\right)^n \right| \text{ cm}$$

This gives a constraint:

$$b_0(x) \simeq 1 - \kappa x$$

$$\kappa x_{SE} \left(\frac{r}{r_*}\right)^n \lesssim 10^{-13}$$

Since $x_{\rm SE} \simeq 10^{-6}$, the perihelion constraint is better :

$$\left(\frac{r}{r_*}\right)^n \lesssim 10^{-11}$$

Conclusions

- The two-body potential is easily expressed in the EOB formalism
- EP violation in the Sun-Earth-Moon system is weaker than anomalous perihelion precession in the P(X) model
- Future direction : conservative and dissipative dynamics of inspiralling compact objects

Finite Elements simulation

Basis function on the grid

$$\phi = \sum_{j} c_{j} \psi_{j}$$

$$\nabla \cdot \left(\nabla \phi + (\nabla \phi)^2 \nabla \phi \right) = -T \qquad \Leftrightarrow \qquad \int d^3x \left((1 + (\nabla \phi)^2) \nabla \phi \cdot \nabla \psi_j - T \psi_j \right) = 0$$

Solve this matrix equation by LU decomposition

Then
$$E = \int d^3x \left(\frac{(\nabla \phi)^2}{2} + \frac{(\nabla \phi)^4}{4} \right) + 4\pi m_1 \phi(\mathbf{x}_1) + 4\pi m_2 \phi(\mathbf{x}_2)$$

Superposing nonlinear solutions

Sufficiently close to 2, we should expect : $\psi(\mathbf{x}) \simeq 3(m_2|\mathbf{x} - \mathbf{x}_2|)^{1/3}$

Expand the action
$$S = \int dt d^3x \left[-\frac{1}{2} (\nabla \phi)^2 - \frac{1}{4} (\nabla \phi)^4 + \phi T \right]$$

$$\Rightarrow S = S[\phi_1] + \int dt d^3x \left[-\frac{1}{2} (\nabla \phi_1)^2 (\nabla \psi)^2 - (\nabla \phi_1 \cdot \nabla \psi)^2 - (\nabla \psi)^2 \nabla \phi_1 \cdot \nabla \psi - \frac{1}{4} (\nabla \psi)^4 + \psi T_1 \right]$$

If the last term dominates over the other, we recover the original action!

Superposing nonlinear solutions

$$\phi = \phi_1(\mathbf{x} - \mathbf{x}_1) + \psi \quad \text{with} \quad \phi_1(r) = 3(m_1 r)^{1/3}$$

$$\psi(\mathbf{x}) \simeq 3(m_2 | \mathbf{x} - \mathbf{x}_2 |)^{1/3}$$

$$S = S[\phi_1] + \left[dtd^3x \left[-\frac{1}{2} (\nabla \phi_1)^2 (\nabla \psi)^2 - (\nabla \phi_1 \cdot \nabla \psi)^2 - (\nabla \psi)^2 \nabla \phi_1 \cdot \nabla \psi - \frac{1}{4} (\nabla \psi)^4 + \psi T_1 \right]$$

$$S = S[\psi_1] + \int dld \ x \left[-\frac{1}{2} (\nabla \psi_1) (\nabla \psi) - (\nabla \psi_1 \cdot \nabla \psi) - (\nabla \psi) \nabla \psi_1 \cdot \nabla \psi - \frac{1}{4} (\nabla \psi) + \psi I_1 \right]$$

Ratio of the cubic and quartic terms:

$$\frac{(\nabla \psi)^2 \nabla \phi_1 \cdot \nabla \psi}{(\nabla \psi)^4} \le \frac{|\nabla \phi_1|}{|\nabla \psi|} \simeq \left(\frac{m_1}{m_2} \left(\frac{r_2}{r_1}\right)^2\right)^{1/3} \qquad \text{(Recall that } r_* = \sqrt{M}\text{)}$$

Condition to superpose the nonlinear solutions:

$$\frac{r_2}{r_{*,2}} \ll \frac{r_1}{r_{*,1}}$$