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GR is a unique metric theory in 4 dimensions

Theoretical consistency: In D = 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g) where ∇ is a Levi-Civita connection. Then
Lovelock’s theorem in D = 4 states that GR with cosmological constant is
the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4)

[
−2Λ + R + αĜ

]
giving,

Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

GR is the unique massless-tensorial 4 dimensional theory of gravity.

The Gauss-Bonnet term is a topological invariant: It does not contribute
to the field equations in D = 4
This is no longer true for a connexion which is not Levi-Civita [Jimenez,

Heisenberg, Koivisto]
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Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Recent data from the EHT compatible with GR for a supermassive black hole
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from a coalescing binary of neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Galileons/Horndeski [Horndeski 1973]

Important constraints on scalar tensor [Creminelli, Vernizzi, Ezquiaga, Zumalacaregui,...]

albeit strong coupling issues [DeRham, Melville]

Here, we will concentrate on cT = 1 theories DHOST or EST [Crisostomi, Koyama,

Langlois, Noui, Vernizzi,..] and obtain rotating black hole solutions
The cT = 1 theories (gravitons propagate at the speed of light) are disformal
versions of Horndeski theories
The theory under scrutiny has unique characteristics. It is far closer to GR than
any version of Hordenski
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cT = 1 theories and their relation to Horndeski

Shift-symmetric scalar tensor theory cT = 1 minimally coupled to matter is
parametrized by K ,A3,G

L = K(X) + G(X)R + A3φ
µφµνφ

ν�φ+ A4φ
µφµρφ

ρνφν + A5(φµφµνφν)2 ,

Dependence on X = gµν∂µφ∂νφ guarantees shift symmetry
K(X) contains the cosmological constant and kinetic terms to lowest order
the operators A4,A5 are fixed with respect to A3,G
Related to Horndeski via a transformation

gµν −→ g̃µν = C(X)gµν + D(X)∇µφ∇νφ

for given C and D.
One can start with a cT 6= 1 Horndeski theory and map it to a cT = 1 theory for
a specific function D.
a disformal D changes speed of gravitons unlike C
D is related to A3 while G is related to C (conformal transformation)
Horndeski frame is simply not the physical frame but can be used in order to find
solutions to cT = 1
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Finding exact solutions

Can we find exact solutions?
Cosmological solutions: self-accelerating, self tuning, cosmological
spherical symmetry: black holes, neutron stars, solitons, regular
black holes...
stationary solutions: black holes with rotation?
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An example of spherical symmetry [Babichev, CC, GEFarèse, Lehébel]

The Horndeski theory

S =
∫

d4x
√
−g [ζR − 2Λ− ηX + βGµν∂µφ∂νφ] ,

is not in the physical frame.

ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2

Solution [Babichev, cc]: f = h = 1− µ
r + η

3β r2, φ = qt ± q
h
√
1− h with

Λeff = −ζη/β.
The physical frame (cT = 1) is :

g̃µν = gµν −
β

ζ + β
2 X

ϕµϕν .

The disformed metric is a black hole. X = −q2 is constant! Solution is an
Einstein metric. φ is regular at the event horizon but not at the cosmological
horizon
In Horndeski theory there are numerous solutions [Lehébel] some of which are not
Einstein metrics X remains constant

f (r) = h(r)(1 + κr2), h(r) = 1 + α− α
arctan(r

√
κ)

r
√
κ
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Going beyond spherical symmetry? [cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, Rµν = Λgµν and X = X0 constant. When is this solution
to the field equations?

A3(X0) = 0, (KX + 4ΛGX )|X0 = 0
where Λ = −K/(2G)|X0 (self-tuning condition)

Any theory parametrized by A3 having a zero at some value is enough to
guarantee a solution.
The real question though is what is the scalar such that X is constant?
Note that if we take Ya = ∂aφ then the derivative of X = YaYbgab = X0 is
simply ab = Y a∇aY b = 0
Hence acceleration zero hence φ is related to a geodesic congruence in the given
spacetime.
the scalar field φ is the Hamilton-Jacobi potential S where ∂S

∂λ
= gµν ∂S

∂xµ
∂S
∂xν
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The example of Carter’s solution (de Sitter-Kerr)

Rotating black hole Einstein metric

ds2 = −
∆r

Ξ2ρ2

[
dt − a sin2θdϕ

]2 + ρ2
(

dr2

∆r
+

dθ2

∆θ

)
+

∆θsin2θ
Ξ2ρ2

[
a dt −

(
r2 + a2

)
dϕ
]2
,

∆r =
(
1−

r2

`2

)(
r2 + a2

)
− 2Mr , Ξ = 1 +

a2

`2
,

∆θ = 1 +
a2

`2
cos2θ , ρ2 = r2 + a2cos2θ ,

Here we have parameters a,M,Λ = 3/l2 which describe a black hole with an
inner, outer event and cosmological horizon for Λ > 0.
To evaluate the HJ potential for geodesics we need to know the inverse metric
and solve a first order differential equation.
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The example of Carter’s solution (de Sitter-Kerr)

The Hamilton Jacobi potential reads [Carter],
S = −E t + Lzϕ+ S(r , θ) ,

since ∂t and ∂φ are Killing vectors and is separable S(r , θ) = Sr (r) + Sθ(θ)!

Sr = ±
∫ √

R
∆r

dr , Sθ = ±
∫ √

Θ
∆θ

dθ ,

R = Ξ2
[
E
(

r2 + a2
)
− a Lz

]2
− ∆r

[
Q+ Ξ2 (a E − Lz )2 + m2r2

]
, (1)

Θ = −Ξ2sin2θ
(

a E −
Lz

sin2θ

)2

+ ∆θ

[
Q+ Ξ2 (a E − Lz )2 −m2a2cos2θ

]
. (2)

This is the starting point for evaluating geodesics of spacetime.
Note we have E ,m, Lz ,Q parametrising the Energy at infinity, rest mass, angular
momentum and Carter’s separation constant.
Here we need φ regular in all the permitted domain of the coordinates. We
clearly need that Θ and R are positive functions.
This leads to Lz = 0 and fixes Carter’s constant Q+ Ξ2a2E2 = m2a2,
Now we can take φ = S
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Rotating black hole

The Hamilton Jacobi potential reads [Carter],
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
η = 1 in the Λ = 0 solution (Kerr).
Once we have Λ > 0 and increasing we have ηc < 1 and decreasing
ηc is such that R has a double zero at some rEH < r0 < rCH
Note that we have two branches of solutions. One which is regular at the event
horizon and one which is regular at the cosmological horizon.
Fixing η = ηc we have a regular solution everywhere by joining the two branches
at r = r0!

ℋb
+ ℋc

+

ϕ=const

SINGULARITY FUTURE INFINITY

C. Charmousis Rotating black holes in higher order gravity theories



Conclusions

Although solution is stealth, perturbations defining quasi normal modes and
resulting phenomenology will be different.
Can obtain any GR vacuum solution with well defined hair in such theories
One can use this stealth solution to construct numerically other non GR
solutions by relaxation techniques
For cT = 1 the only X = constant solutions are Einstein spaces. If we expect
solutions to have asymptotically X constant then in this theory all solutions are
asymptotically Einstain spaces.
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