

Optimising growth of structure constraints on modified gravity

Julien Bel (CPT Marseille)

colaborators:

L. Perenon, R. Maartens, A. de la Cruz-Dombriz

Perenon et al. (2019); arXiv:190111063

<u>Outline</u>

Effective Field Theory of Dark Energy

Redshift Space Distortions and spectroscopic galaxy survey

Data analysis

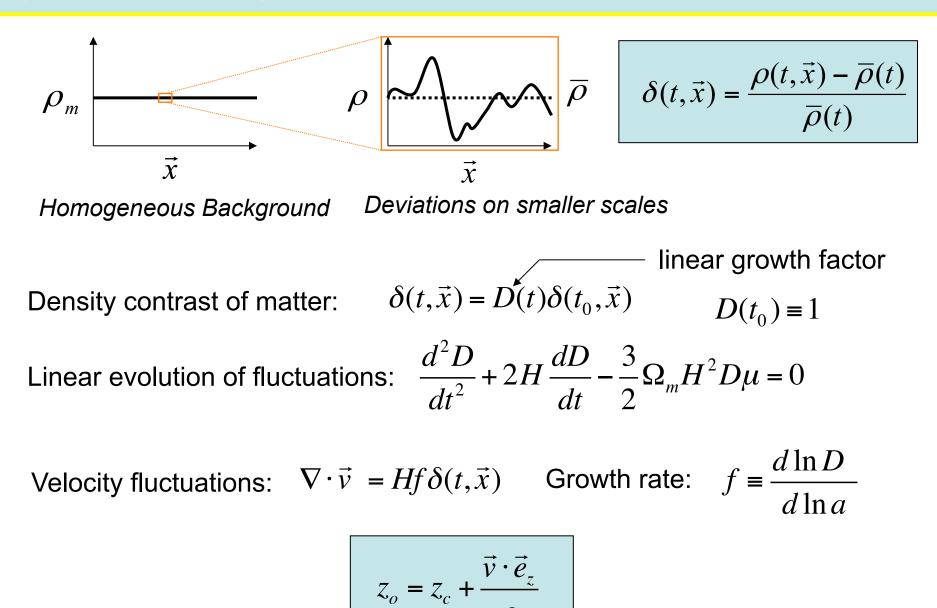
Conclusion

2) EFT of DE parameterization

Gravitational action (Horndeski):

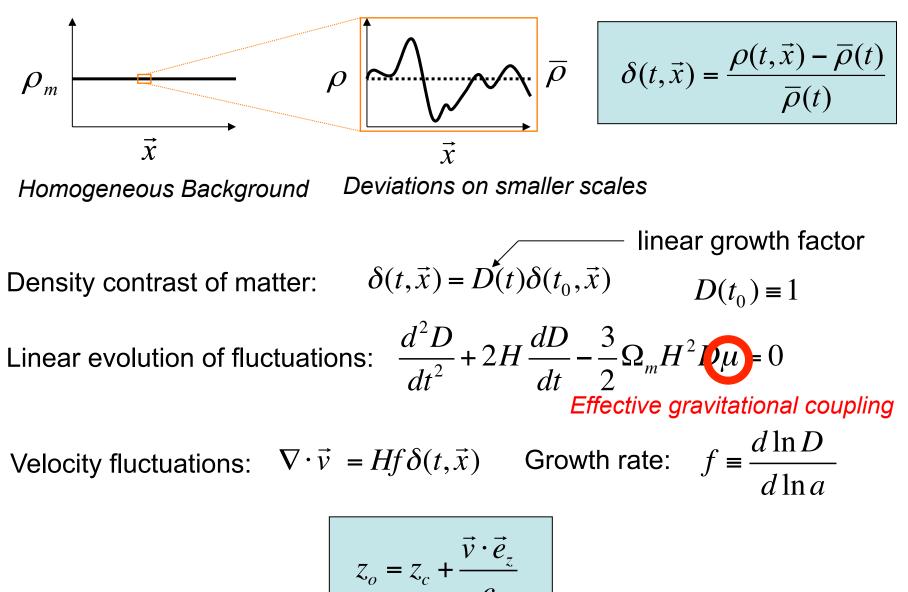
$$S_g = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} - \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} \right]$$
(Piazza et al. 2014)

0

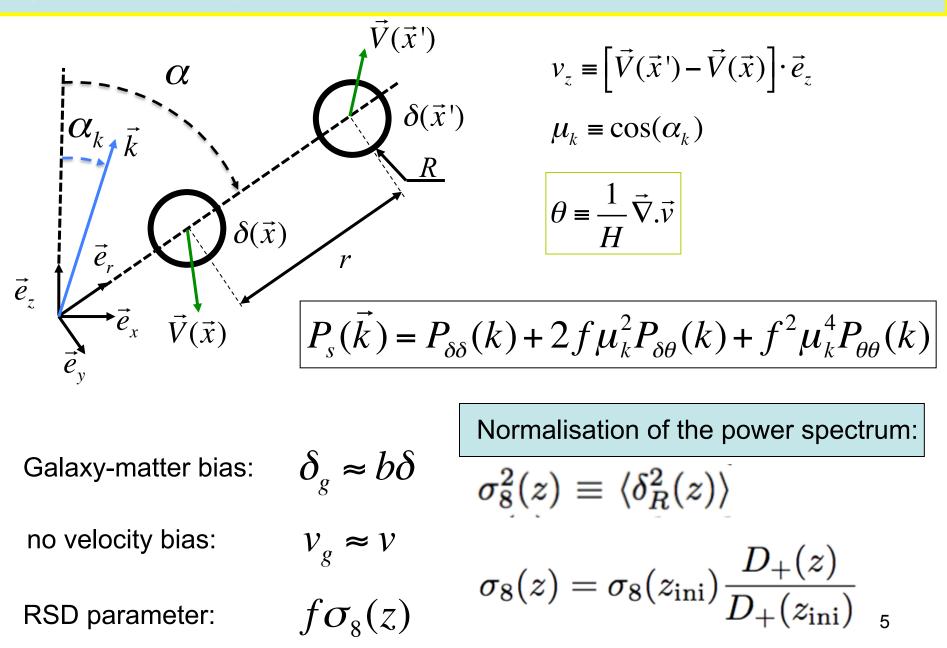

$$\mathcal{C} = rac{1}{2} \left(H \mu_1 - \dot{\mu}_1 - \mu_1^2
ight) - \dot{H} - rac{3}{2} rac{M_{
m pl}^2}{M^2} H^2 \Omega_{
m m} \,\,,$$
 $\lambda = rac{1}{2} \left(5 H \mu_1 + \dot{\mu}_1 + \mu_1^2
ight) + \dot{H} + 3 H^2 - rac{3}{2} rac{M_{
m pl}^2}{M^2} H^2 \Omega_{
m m}$

$$rac{\mu_1}{H}(z) \; = rac{1-\Omega_{
m m}(z)}{1-\Omega_{
m m,0}} \left[p_{10} + p_{11} \left(\Omega_{
m m}(z) - \Omega_{
m m,0}
ight)
ight]$$

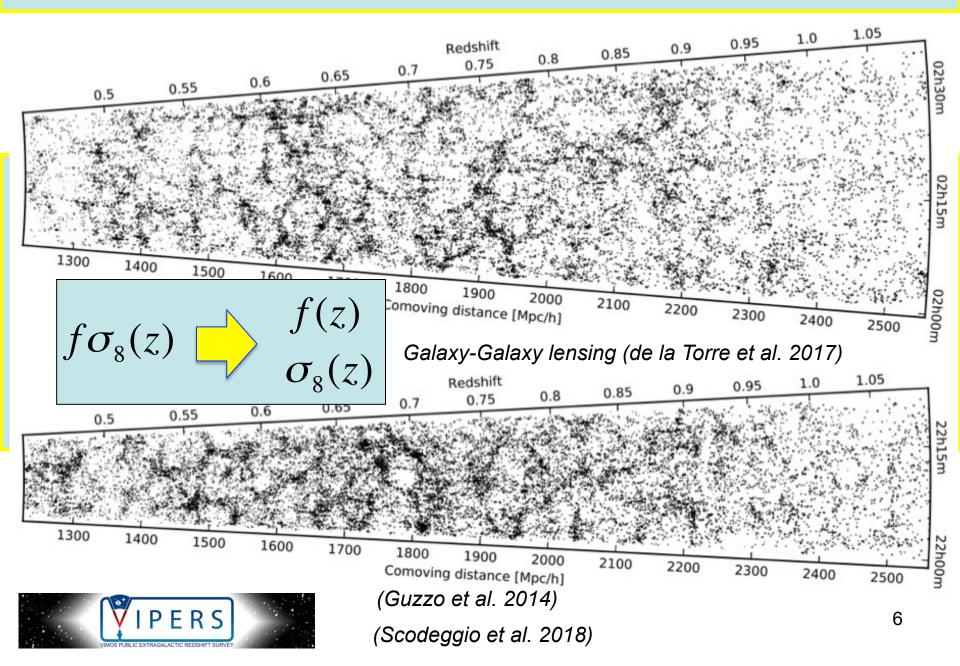
$$rac{\mu_2^2}{H^2}(z) \; = rac{1-\Omega_{
m m}(z)}{1-\Omega_{
m m,0}} \left[p_{20} + p_{21} \left(\Omega_{
m m}(z) - \Omega_{
m m,0}
ight)
ight]$$


$$rac{\mu_3}{H}(z) \; = rac{1-\Omega_{
m m}(z)}{1-\Omega_{
m m,0}} \left[p_{30} + p_{31} \left(\Omega_{
m m}(z) - \Omega_{
m m,0}
ight)
ight]$$

3) EFT of DE dynamics



4


3) EFT of DE dynamics

4) Redshift Space Distortions

5) VIPERS

6) Characterizing the Large Scale Structure

Effective gravitational coupling: $\mu = \mu_{
m sc} \left(1 + \mu_{
m ff} \right)$ (Perenon et al. 2015)

$$\mu_{\rm sc} = \frac{M^2(z=0)}{M^2(z)} \qquad \qquad \mu_{\rm ff} = \frac{(\mu_1 + \mu_3)^2}{2B}$$
$$\mu_{\rm sc}(z=0) = 1$$

Gravitational slip parameter:

$$\gamma = 1 - rac{\mu_1(\mu_1+\mu_3)}{(H+\mu_1)\left(\mu_1+\mu_3
ight) - \dot{\mu}_1 + \dot{\mu}_3 - 2\dot{H} - 3(M_{
m pl}^2/M^2)H^2\Omega_{
m m}}$$

Light deflection parameter:

$$\Sigma=\mu\,rac{1+\gamma}{2}$$

7) Stability conditions and CMB prior

No ghost and no gradient instabilities (sharp flat prior):

Quasi Static Approximation (sharp flat prior):

 $c_s^2 = B/A \geq 0.1$

Planck covariance matrix (Gaussian prior):

 $\chi^2_{(\Omega_{\rm m,0},\,\sigma^*_{8,0})} = (\Omega_{\rm m,0} - \Omega^{\rm Planck}_{\rm m,0}, \sigma^*_{8,0} - \sigma^{\rm Planck}_{8,0}) \; C^{-1}_{\rm Planck} \; (\Omega_{\rm m,0} - \Omega^{\rm Planck}_{\rm m,0}, \sigma^*_{8,0} - \sigma^{\rm Planck}_{8,0})^t$

where :
$$\sigma_{8,0}^* = \sigma_{8,0} \frac{D_+^{\Lambda \text{CDM}}(z=0)}{D_+(z=0)}$$

Ensure that the amplitude of matter perturbation were in agreement with the scalar amplitude measured by Planck

Compilation of 30 measurements of the RSD parameter :

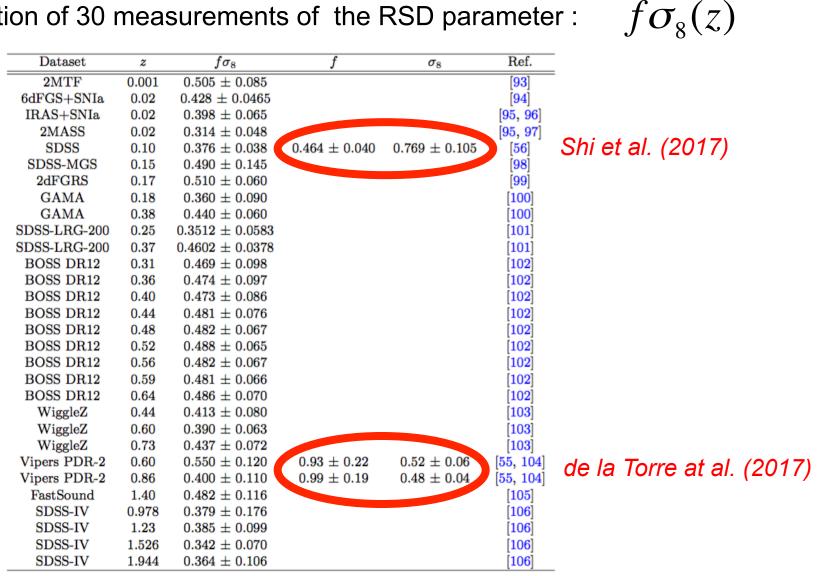
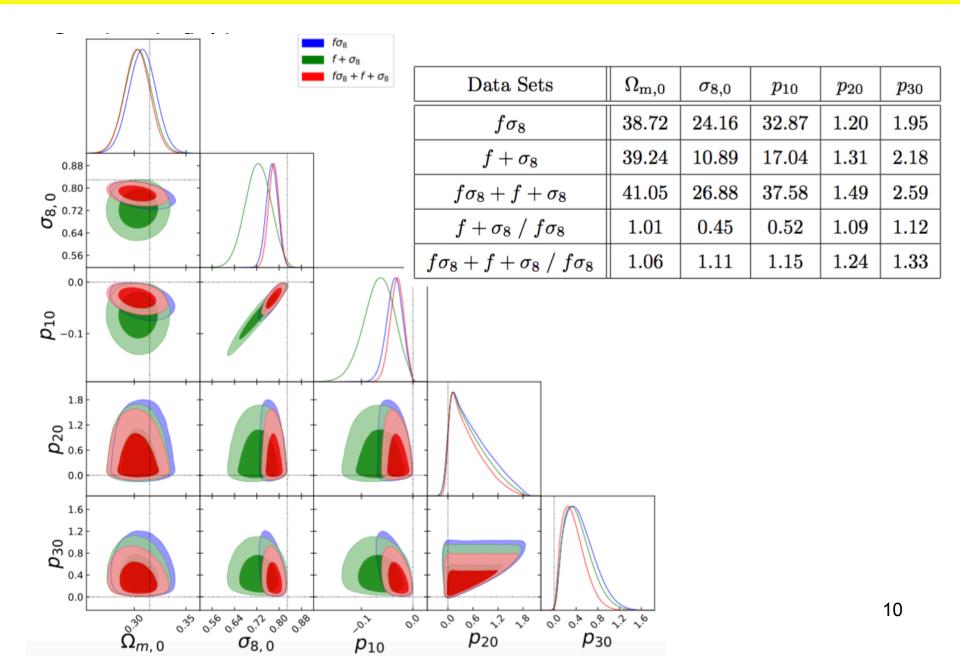
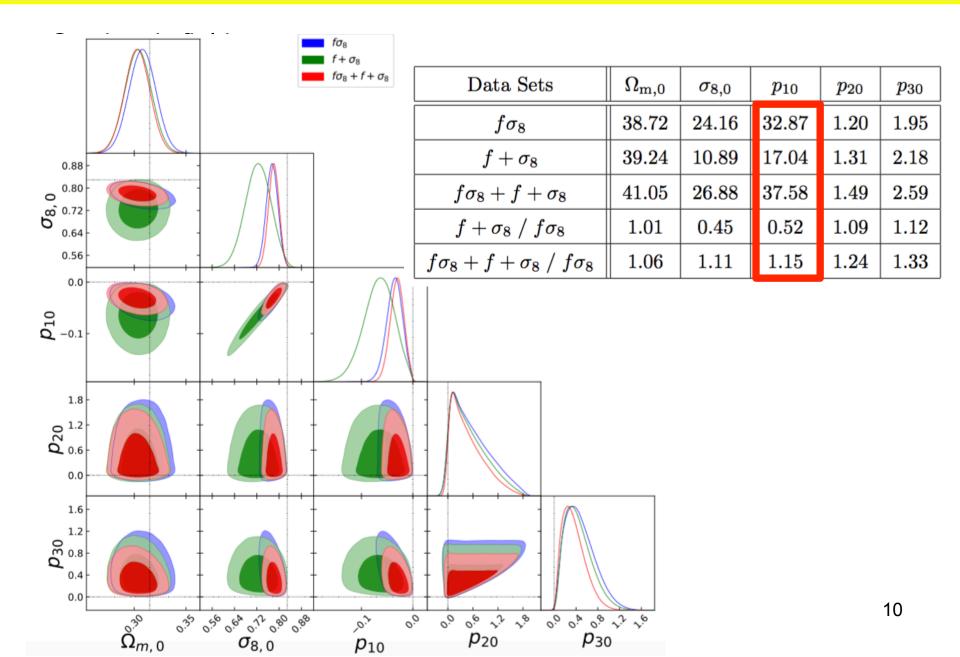
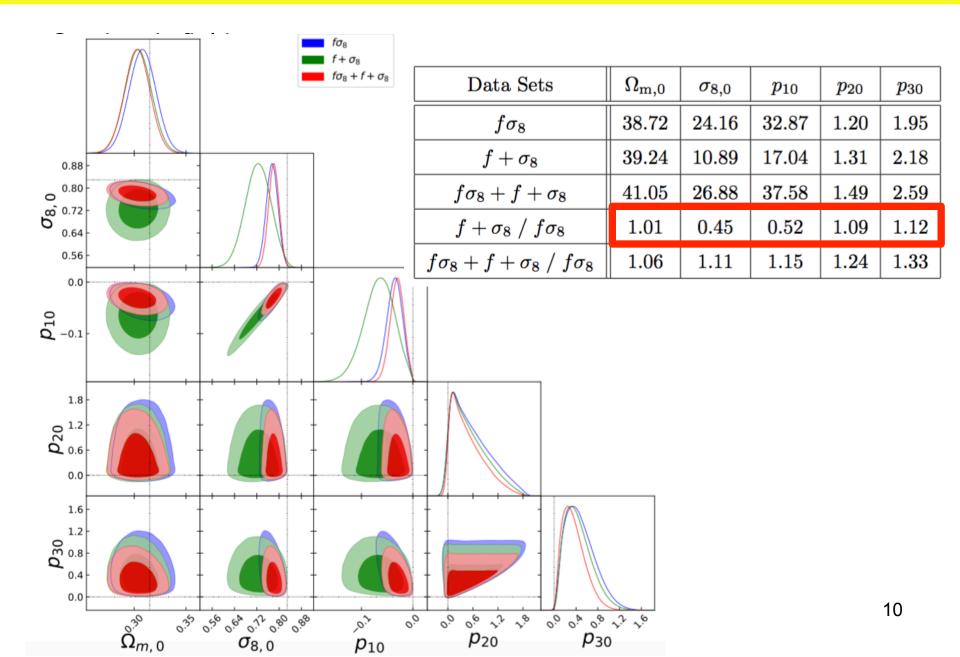
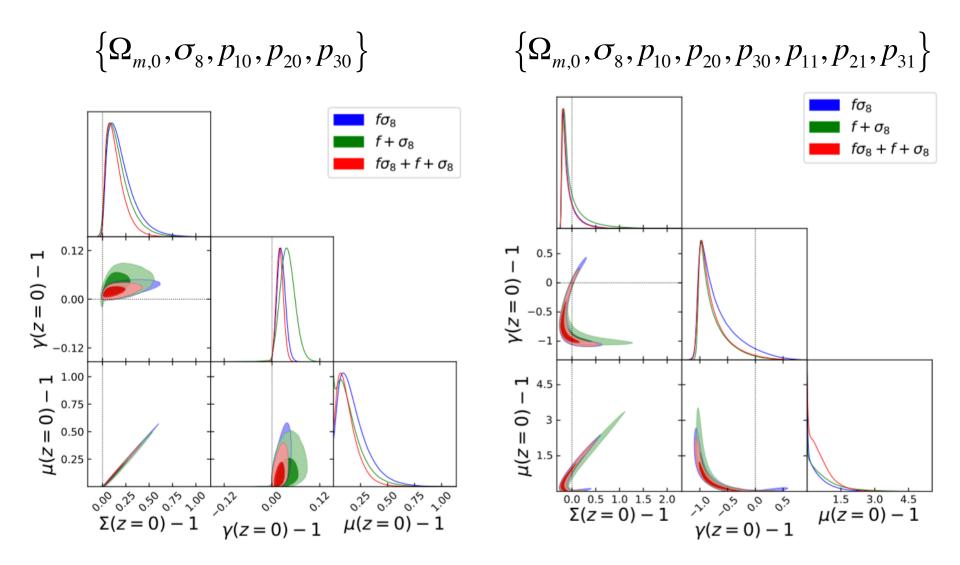




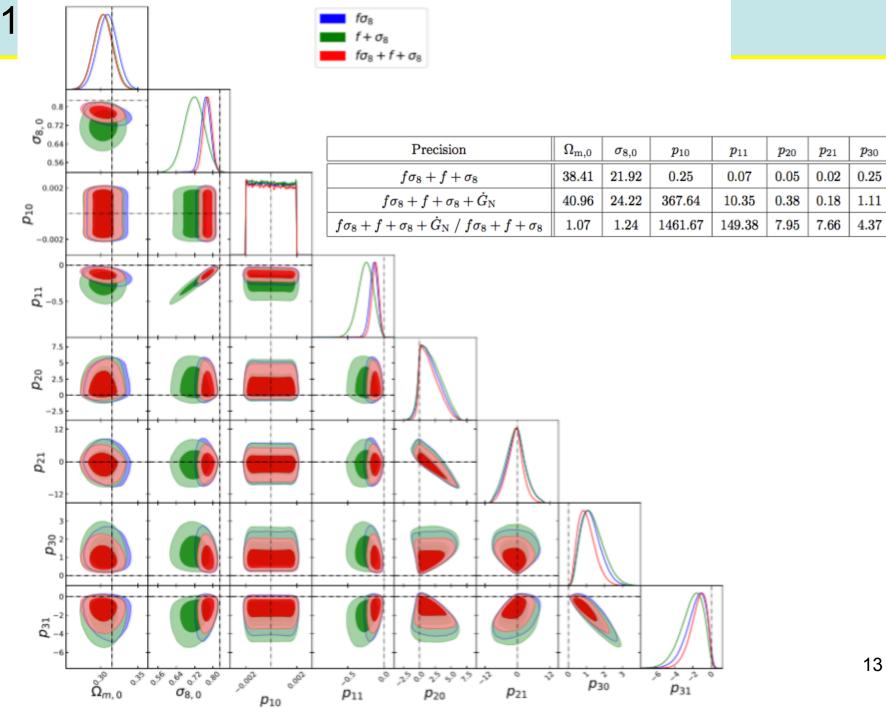
Table 1. The growth of structure data used in the current analysis. The true uncertainty on the σ_8 measurement of SDSS-veloc is $0.769^{+0.121}_{-0.089}$ but for simplicity we consider the symmetric uncertainty 0.769 ± 0.105 .


9) Constraints on EFT parameters (pi0)


9) Constraints on EFT parameters (pi0)

9) Constraints on EFT parameters (pi0)

10) Constraints on lensing observables

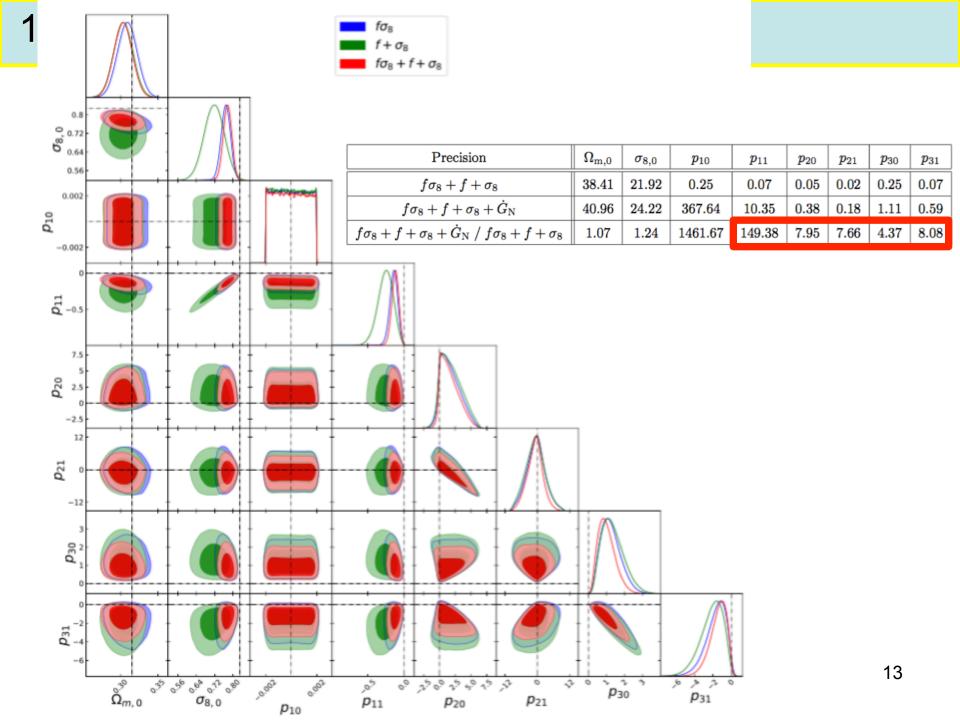

Mars ranging data (Konopliv et al. 2011):

$$|\dot{G}_{\rm N}/G_{\rm N}| \lesssim 1.6 \times 10^{-13} \ {\rm year}^{-1}$$

which can be expressed in terms of the Hubble parameter:

$$|\dot{G}_{\rm N}/G_{\rm N}| < 0.002 \ H_0$$

flat sharp prior on coupling: $\left| \mu_1(z=0) \right| = \left| p_{10} \right| < 0.002$


13

 p_{31}

0.07

0.59

8.08

68% limits	p_{10}	<i>p</i> ₁₁	p_{20}	p_{21}	p_{30}	<i>p</i> ₃₁
$f\sigma_8+f+\sigma_8$	$-6.643\substack{+3.686\\-3.834}$	$23.888^{+13.998}_{-13.403}$	$-4.960\substack{+18.954\\-20.924}$	$26.215\substack{+33.959\\-37.211}$	$1.746\substack{+3.699 \\ -3.655}$	$13.838^{12.946}_{-12.241}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$-0.000\substack{+0.002\\-0.002}$	$-0.127\substack{+0.095\\-0.096}$	$1.697\substack{+2.933\\-2.157}$	$-0.926\substack{+5.852\\-5.990}$	$1.022\substack{+0.930\\-0.806}$	$-1.447^{+1.510}_{-1.812}$

	$\Omega_{\mathrm{m},0}$	$\sigma_{8,0}$	$\mu\left(z=0\right)$	$\Sigma (z = 0)$	$\gamma (z = 0)$
$f\sigma_8+f+\sigma_8$	$0.320\substack{+0.026\\-0.026}$	$0.789\substack{+0.042\\-0.046}$	$1.575\substack{+1.021\\-0.575}$	$0.925\substack{+0.344\\-0.165}$	$0.240\substack{+0.615\\-0.342}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$0.303\substack{+0.024\\-0.024}$	$0.776\substack{+0.036\\-0.037}$	$1.321\substack{+0.370 \\ -0.282}$	$1.321\substack{+0.371 \\ -0.280}$	1.00000 ± 0.00093

68% limits	p_{10}	<i>p</i> ₁₁	p_{20}	p_{21}	p_{30}	<i>p</i> ₃₁
$f\sigma_8+f+\sigma_8$	$-6.643\substack{+3.686\\-3.834}$	$23.888^{+13.998}_{-13.403}$	$-4.960\substack{+18.954\\-20.924}$	$26.215\substack{+33.959\\-37.211}$	$1.746\substack{+3.699 \\ -3.655}$	$13.838^{12.946}_{-12.241}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$-0.000\substack{+0.002\\-0.002}$	$-0.127\substack{+0.095\\-0.096}$	$1.697^{+2.933}_{-2.157}$	$-0.926\substack{+5.852\\-5.990}$	$1.022\substack{+0.930\\-0.806}$	$-1.447\substack{+1.510\\-1.812}$

	$\Omega_{\mathrm{m,0}}$	$\sigma_{8,0}$	$\mu\left(z=0\right)$	$\Sigma (z = 0)$	$\gamma \left(z=0 ight)$
$f\sigma_8+f+\sigma_8$	$0.320\substack{+0.026\\-0.026}$	$0.789\substack{+0.042\\-0.046}$	$1.575\substack{+1.021\\-0.575}$	$0.925\substack{+0.344\\-0.165}$	$0.240\substack{+0.615\\-0.342}$
$f\sigma_8 + f + \sigma_8 + \dot{G}_{ m N}$	$0.303\substack{+0.024\\-0.024}$	$0.776\substack{+0.036\\-0.037}$	$1.321\substack{+0.370 \\ -0.282}$	$1.321\substack{+0.371 \\ -0.280}$	1.00000 ± 0.00093

68% limits	p_{10}	p_{11}	p_{20}	p_{21}	p_{30}	<i>p</i> ₃₁
$f\sigma_8+f+\sigma_8$	$-6.643\substack{+3.686\\-3.834}$	$23.888^{+13.998}_{-13.403}$	$-4.960^{+18.954}_{-20.924}$	$26.215\substack{+33.959\\-37.211}$	$1.746\substack{+3.699 \\ -3.655}$	$13.838^{12.946}_{-12.241}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$-0.000\substack{+0.002\\-0.002}$	$-0.127\substack{+0.095\\-0.096}$	$1.697^{+2.933}_{-2.157}$	$-0.926\substack{+5.852\\-5.990}$	$1.022\substack{+0.930\\-0.806}$	$-1.447^{+1.510}_{-1.812}$

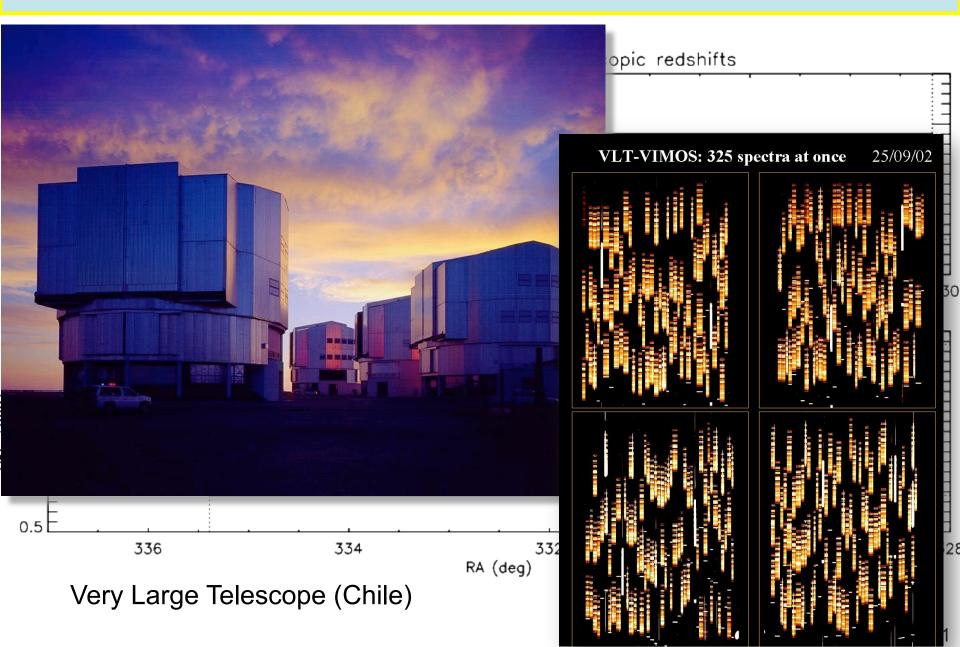
	$\Omega_{\mathrm{m},0}$	$\sigma_{8,0}$	$\mu\left(z=0\right)$	$\Sigma (z = 0)$	$\gamma \left(z=0 ight)$
$f\sigma_8+f+\sigma_8$	$0.320\substack{+0.026\\-0.026}$	$0.789\substack{+0.042\\-0.046}$	$1.575\substack{+1.021\\-0.575}$	$0.925\substack{+0.344\\-0.165}$	$0.240\substack{+0.615\\-0.342}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$0.303\substack{+0.024\\-0.024}$	$0.776\substack{+0.036\\-0.037}$	$1.321\substack{+0.370 \\ -0.282}$	$1.321\substack{+0.371 \\ -0.280}$	1.00000 ± 0.00093

68% limits	p_{10}	p_{11}	p_{20}	p_{21}	p_{30}	<i>p</i> ₃₁
$f\sigma_8+f+\sigma_8$	$-6.643\substack{+3.686\\-3.834}$	$23.888^{+13.998}_{-13.403}$	$-4.960^{+18.954}_{-20.924}$	$26.215\substack{+33.959\\-37.211}$	$1.746\substack{+3.699 \\ -3.655}$	$13.838^{12.946}_{-12.241}$
$f\sigma_8+f+\sigma_8+\dot{G}_{ m N}$	$-0.000\substack{+0.002\\-0.002}$	$-0.127\substack{+0.095\\-0.096}$	$1.697^{+2.933}_{-2.157}$	$-0.926\substack{+5.852\\-5.990}$	$1.022\substack{+0.930\\-0.806}$	$-1.447^{+1.510}_{-1.812}$

	$\Omega_{\mathrm{m},0}$	$\sigma_{8,0}$	$\mu\left(z=0\right)$	$\Sigma (z = 0)$	$\gamma (z = 0)$
$f\sigma_8+f+\sigma_8$	$0.320\substack{+0.026\\-0.026}$	$0.789\substack{+0.042\\-0.046}$	$1.575\substack{+1.021\\-0.575}$	$0.925\substack{+0.344\\-0.165}$	$0.240\substack{+0.615\\-0.342}$
$f\sigma_8 + f + \sigma_8 + \dot{G}_{ m N}$	$0.303\substack{+0.024\\-0.024}$	$0.776\substack{+0.036\\-0.037}$	$1.321\substack{+0.370 \\ -0.282}$	$1.321\substack{+0.371 \\ -0.280}$	1.00000 ± 0.00093

$$\mu_{\rm ff} = 1.321^{+0.370}_{-0.284} (95\% \text{ c.l.})$$

Conclusions


• Separate measurements of f and s8 improve by at least 20% the precision on EFT of DE parameters

• We use the splitting of the gravitational coupling in order to exhibit the strength of gravity across cosmic time

- Using the solar system prior, we showed that
 - The precision obtained from f+s8 increase by a factor of 10
 - The overall precision on the full sample increases by a factor of 4

• Growth of structure data are favouring a fifth force at 95% confidence level

5) VIPERS

5) VIPERS

0:00:00 Mizar D3 W3 lgo Castor NGP . cturus Aldebara Betelgeuse Proc D1 α D2 Rigel Spica SGP Antares Fomalhaut (ban) 5 anopus Acherna αZ 1 3 • NGC 2 . . 1 • 0 336 334 332 330 328 RA (deg)

VIPERS PDR-1: ~50 000 spectroscopic redshifts

Very Large Telescope (Chile)