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Cosmic neutrino background 
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At early times (Tn ≫ mn), neutrinos contribute as radiation

At late times (Tn ≪ mn), neutrinos contribute as matter

Non-relativistic transition 

Cosmic Microwave
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Relativistic n’s Non-relativistic n’s

At recombination
mn < 0.6 eV (Smn <1.7) : relativistic
mn > 0.6 eV (Smn >1.7) : matter-like
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Fig. 14. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the neutrinoless ΛCDM model of section 4.4.6, a more re-
alistic ΛCDM model with three massless neutrinos (fν ≃ 0), and finally a ΛMDM
model with three massive degenerate neutrinos and a total density fraction fν = 0.1.
In all models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed.
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Fig. 15. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the same ΛCDM model as in the previous figure, with three
massless neutrinos (fν ≃ 0); and two models with three massive degenerate neutri-
nos and a total density fraction fν = 0.1, sharing the same value of ωb and ωcdm as
the massless model, which implies a shift either in h (green dashed) or in ΩΛ (blue
dotted).

models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed, with the
increase in ων being compensated by a decrease in ωcdm. There is a clear
difference between the neutrinoless and massless neutrino cases, caused by a
large change in the time of equality and by the role of the neutrino energy-
momentum fluctuations in the perturbed Einstein equation [91]. However our
purpose is to focus on the impact of the mass, i.e. on the difference between
the solid (red) and thick dashed (green) curves in Fig. 14.

Impact on the CMB temperature spectrum. For fν ≤ 0.1, the three
neutrino species are still relativistic at the time of decoupling, and the di-
rect effect of free-streaming neutrinos on the evolution of the baryon-photon
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Impact on CMB 
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mn < 0.6 eV (Smn < 1.7 eV) - relativistic at CMB
Þ “No” impact on baryon-photon plasma
Þ Subtle changes in peak position & amplitude
Þ Main effect is the early Integrated Sachs-Wolfe effect (ISW) after 

recombination   ( 50<l<300) - position and amplitude of first peak.

WMAP
Planck

Ø CMB alone not sufficient for 
neutrinos masses sub-eV

Ø Add information directly from 
the matter distribution
→ Neutrino free-streaming

fn = 0.1
fn = 0.0

Þ fn =  Wn / Wm
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Free-streaming:
Ø Wash out the fluctuations 
Ø Suppression of small 

scales in P(k) 

Suppression factor ⟺ Smn
⟺ fn = Wn/Wm

Three probes directly sensitive 
to free-steaming

Ø Galaxy Power spectrum
Ø Weak lensing
Ø Ly-a absorption along the 

line of sight

CMB- lensing is similarly affected 
by free-steaming
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Impact on matter power spectrum

1.0 eV

0.5 eV
8fn

Wavenumber k (h.Mpc-1)

1D Ly-a

Galaxy LSS

P(
k)

 m
as

si
ve

 /
 P

(k
) 
m
as

sl
es

s

CMB

z=4

z=0

Large scales Small scales

Impact in CMB-alone only for non-
relativist neutrinos ⇒ ~1-2 eV limit 

WL



7

Neutrino Masses and Hierarchy

Sm > 60 meV Sm > 100 meV

Dm2 > 0 Dm2 < 0

An answer to mass hierarchy with cosmological neutrinos
Ø Particles Physics: atmospheric and solar oscillations
Ø No constraint on absolute masses
Ø 2 possible schemes: normal vs inverted hierarchy
Ø With s(Smn)~20/12 meV,  we measure the mass of the 
neutrinos with a precision better than 3s/5s
Ø With s(Smn)~8 meV, we may have a decision at 5s on 
mass hierarchy
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Current limits on Smn

Ø With Ly-a alone (SDSS/eBOSS+VLT/XQ100): 
Smn < 0.35 eV  @95%CL

Ø With Planck 2018 alone: 
Smn < 0.54 eV  @95%CL

Ø Ly-a combined with CMB (Planck 2018) (just TT)
Smn <0.12 eV  @95%CL

Ø BAO combined with CMB (Planck 2018) (TT,TE,EE and lensing)
Smn <0.12 eV  @95%CL
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Forecast 
on neutrino masses

with future cosmological 
projects
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Probes –Projects    
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Gravitational lensing of CMB

CMB

Gravitational weak lensing
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10 S. Alam et al.

Figure 3. BAO signals in the measured post-reconstruction power spectrum (left panels) and correlation function (right panels) and predictions of the best-fit
BAO models (curves). To isolate the BAO in the monopole (top panels), predictions of a smooth model with the best-fit cosmological parameters but no BAO
feature have been subtracted, and the same smooth model has been divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15 (power
spectrum) and ±0.004 (correlation function) have been added to the points and curves for the high- and low-redshift bins, while the intermediate redshift
bin is unshifted. For the quadrupole (middle panels), we subtract the quadrupole of the smooth model power spectrum, and for the correlation function we
subtract the quadrupole of a model that has the same parameters as the best-fit but with ✏ = 0. If reconstruction were perfect and the fiducial model were
exactly correct, the curves and points in these panels would be flat; oscillations in the model curves indicate best-fit ✏ 6= 0. The bottom panels show the
measurements for the 0.4 < z < 0.6 redshift bin decomposed into the component of the separations transverse to and along the line of sight, based on
x(p, µ) = x0(p) + L2(µ)x2(p), where x represents either s

2 multiplied by the correlation function or the BAO component power spectrum displayed in the
upper panels, p represents either the separation or the Fourier mode, L2 is the 2nd order Legendre polynomial, p|| = µp, and p? =

p
p2 � µ2p2.

c� 2016 RAS, MNRAS 000, 1–38

Probes - Projects  
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BAO

3D power spectrum  - RSD
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13.3 Baryon Acoustic Oscillations

Figure 13.4: Left panel: Galaxy angular auto power spectra in five redshift bins (shifted for clarity). The central
photometric redshift of each bin is as labeled, and the bin width is proportional to 1 + z, increasing from 0.07 to
0.16 for the bins shown. We assume photometric redshift errors with rms �z = 0.05(1 + z). The BAO features are
prominent at multipole ` of several hundred. The gray area indicates the statistical error (cosmic variance and shot
noise) per multipole for the bin centered at z = 1.66. Each power spectrum is shown to a value of ` beyond which
nonlinear evolution would significantly contaminate our analysis. The flattening of the power spectra at ` & 1000,
visible for the high-redshift curves, is due to shot noise. Right panel: Cross power spectra Pij(`) between bin i

centered at z = 1.66 and bin j centered at z = 1.22 (4th neighbor, dotted line), 1.43 (2nd neighbor, dashed line),
1.66 (solid line), 1.92 (2nd neighbor, dash-dotted line), and 2.20 (4th neighbor, long-dash-dotted line). These quantify
the e↵ect of overlap between these bins, and can be used to quantify the photometric redshift error distribution.

power spectrum at any redshift. A direct application of the fitting formula to the CDM power
spectrum would cause a large shift of the BAO features. In addition, it has di�culty processing
power spectra that have an oscillating logarithmic slope (Zhan 2006). Thus, we calculate the
multiplicative nonlinear correction to a linear matter power spectrum with no BAO features that
otherwise matches the CDM power spectrum (Eisenstein & Hu 1999), and apply this ratio to the
linear CDM power spectrum with BAO features (see also Eisenstein et al. 2005).

We assign LSST galaxies to 30 bins from photometric redshift of 0.15 to 3.5 with the bin width
proportional to 1 + z in order to match the photometric redshift rms, �z = 0.05(1 + z). The left
panel of Figure 13.4 shows five auto power spectra labeled with their central photometric redshift.
One can clearly identify the BAO features at multipole ` & 100 despite the radial averaging over
the bin width. Note that the broadband turnover in Figure 13.4 between ` = 10 and 100 does not
directly correspond to the broadband turnover in the three-dimensional matter power spectrum
P (k). In full calculations without the Limber approximation, the angular power spectrum becomes
flat on large scales (see, e.g., Loverde & Afshordi 2008). Since we exclude modes ` < 40 and since
smaller scale modes carry more statistical power, the errors of the Limber approximation on large
scales have little impact on our results. The flattening of the z = 2.05 and 2.50 power spectra at
` & 1000 is due to the shot noise. However, this is not relevant, because the shot noise depends
on binning (hence, n̄i); what is relevant is the amount of information that can be extracted with
a particular binning scheme (see Zhan 2006).

The right panel of Figure 13.4 shows four cross power spectra between the bin centered on z = 1.66
and its neighbors. The auto spectrum at z = 1.66 is included for reference. The amplitude of the
cross power spectrum is largely determined by the overlap between the two bins in true redshift

471

Angular power spectrum 
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DESI : 3D mapping of Universe

6 million LRGs
0.4 < z < 1.0

Five target classes spanning redshifts z=0.05 ➔ 3.7 for clustering
~35 million redshifts over 14,000 sq. degrees in five years

2.4 million QSOs 
Lya z > 2.1
Tracers 1.0 < z < 2.1

17 million ELGs
0.6 < z < 1.6

Re
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10 million
brightest galaxies
0.05 < z < 0.4
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CMB constraints. Current γ constraints are taken from Rapetti et al. (2009) who make a measurement under 
the assumption of flatness; we do not make this assumption, so the improvement derived for this parameter 
should be considered a conservative estimate. 
Table 2.2: A summary of the forecasted cosmology constraints from Euclid. The figure of merit (FoM) is listed in the 
last column. Note that a larger FoM is better. Euclid Primary: Combined constraints from Euclid weak lensing 
tomography and galaxy clustering. Euclid All: Constraints from primary probes combined with galaxy clusters and 
ISW. Current constraints from Rapetti et al. (2009), Komatsu et al. (2010) and Suzuki et al. (2011). Improvement 
Factor: improvement over the current constraints compared to the Euclid+Planck case. For modified gravity a simple 
parameterisation of the growth factor f(z)=Ωm

γ is used. The neutrino mass mν/eV is the total mass summed over all 
species, assuming a degenerate hierarchy. All constraints are 1σ predicted errors marginalised over all other 
parameters (Ωm: 0.25, ΩΛ: 0.75, Ωb: 0.0445, σ8: 0.8, ns: 1.0, h: 0.7). Here we use expected 2-point (TT, ET, EE, BB) 
correlations from Planck, and do not include CMB lensing. 

 Modified 
Gravity Dark Matter Initial 

Conditions Dark Energy 

Parameter Ȗ mȞ/eV fNL wp wa FoM 

Euclid Primary  0.010 0.027 5.5 0.015 0.150 430 

Euclid All 0.009 0.020 2.0 0.013 0.048 1540 

Euclid+Planck 0.007 0.019 2.0 0.007 0.035 4020 

Current 0.200 0.580 100 0.100 1.500 ~10 

Improvement Factor 30 30 50 >10 >50 >300 

 
The FoM provides a convenient way to assess the statistical power of a combination of measurements, but 
does not take into account the detrimental effects of systematic errors. Hence a means to assess the influence 
of such biases is critical: the FOM only makes sense if systematic errors are negligible. In this particular 
respect, the Euclid mission can be compared to HST Key Project on the Hubble constant H0, which primarily 
focused on reducing the systematics on absolute calibration of a few highly resolved Cepheids (Freedman et 
al., 2001). The primary strength of Euclid is its control of biases produced by systematics and on the use of 
several methods jointly, applied to the same survey. The primary probes are individually sufficiently precise 
to test for consistency between results. This ability is critical given the profound implications of an observed 
deviation from the concordance model and is lost if the statistical uncertainty of any individual probe is large 
compared to the objective. Although a FoM~400 may appear achievable if current constraints are combined 
with future data from the Dark Energy Survey (DES 1 ), the Baryon Oscillation Spectroscopic Survey 
(BOSS2), and Planck, the relatively large uncertainties of the individual ground-based probes prevents their 
internal consistency to be determined. The debate about the value of the H0 provides a well-known example: 
both sides claimed small statistical uncertainties (i.e. large FoM), yet the actual values were different. 

Our forecast results are an improvement over the numbers presented in the Yellow Book (Assessment Phase 
Study Report) because we now include the full galaxy power spectrum. Previously only the localised BAO 
peak position was used, which contains less information. We also include realistic secondary dark energy 
probes for the “Euclid All” scenario in Table 2.2. By themselves the secondary probes constrain the dark 
energy properties to Δwp=0.05 and FoM=55; however in combination with the weak lensing and clustering 
results, the sum is much more than the individual parts leading to a substantially improvement FoM>1500. 
The results presented here are consistent with the findings of the ESA-ESO working group on fundamental 
cosmology (Peacock et al., 2006), the NASA Dark Energy Task Force (Albrecht et al., 2006) as well as 
numerous papers available on the predicted constraints obtainable for the Euclid cosmological probes. 

                                                      
1 http://www.darkenergysurvey.org/reports/proposal-standalone.pdf 
2 http://www.sdss3.org/collaboration/description.pdf and Eisenstein et al. (2011) 

Ø DESI and Euclid combined with Planck give s(mn)~20 meV

2 SCIENCE MOTIVATION AND REQUIREMENTS 32

Table 2.11: Constraints on the sum of neutrino masses from DESI forecasts in combination with
constraints from the Planck satellite. The experiment combinations are identified as described in
the caption of Table 2.10. The last four cases include the information from Planck and DESI BAO
measurements. Fiducial values are ⌃m⌫ = 0.06 eV, N⌫,e↵ = 3.04. ⌃m⌫ constraints assume fixed
N⌫ , while N⌫ is marginalized over ⌃m⌫ .

Data �⌃m⌫
[eV] �N⌫,e↵

Planck 0.56 0.19
Planck + BAO 0.087 0.18
Gal (kmax = 0.1hMpc�1) 0.030 0.13
Gal (kmax = 0.2hMpc�1) 0.021 0.083
Ly-↵ forest 0.041 0.11
Ly-↵ forest + Gal (kmax = 0.2) 0.020 0.062

2.5.2 Neutrinos

The e↵ects of neutrinos in cosmology are well understood (for a review, see [165]). They decou-
ple from the cosmic plasma when the temperature of the Universe is about 1 MeV, just before
electron-positron annihilation. While ultra-relativistic, they behave as extra radiation (albeit not
electromagnetically coupled) with a temperature equal to (4/11)1/3 of the temperature of the cos-
mic microwave background. As the Universe expands and cools, they become non-relativistic and
ultimately behave as additional dark matter.

Neutrino Mass

The mass of neutrinos has two important e↵ects in the Universe [165]. First, as the neutrinos become
non-relativistic after the time of CMB decoupling they contribute to the background evolution in
the same way as baryons or dark matter, instead of becoming completely negligible as they would
if massless (like photons). This a↵ects anything sensitive to the background expansion rate, e.g.,
BAO distance measurements. Second, the process of neutrinos becoming non-relativistic imprints
a characteristic scale in the power spectra of fluctuations. This is termed the ‘free-streaming
scale’ and is roughly equal to the distance a typical neutrino has traveled while it is relativistic.
Fluctuations on smaller scales are suppressed by a non-negligible amount, of the order of a few
percent. This allows us to put limits on the neutrino masses.

From neutrino mixing experiments we know the di↵erences of the squares of masses of the
neutrino mass eigenstates. The splitting between the two states with similar masses is �m2

21
=

(7.50 ± 0.20) ⇥ 10�5 eV2, while the splitting between the highest and lowest masses squared is
�m2

32
= 2.32+0.12

0.08 ⇥ 10�3 eV2. Two things are not known: the absolute mass scale, and whether
the two states close together are more or less massive than the third state. In what is called the
normal hierarchy, the close states are less massive. In this configuration, the lowest possible masses
in eV are 0, 0.009, and 0.048, so the minimal sum of neutrino masses is 0.057 eV. In the inverted
hierarchy, the minimal masses are 0, 0.048, and 0.049 eV, for a total of 0.097 eV. This is shown in
Figure 2.14.

Table 2.11 shows our projected ⌃m⌫ constraints, obtained through Fisher matrix calculations
as discussed above and in [95].

With a projected resolution of 0.020 eV, DESI will make a precision measurement of the sum of
the neutrino masses independent of the hierarchy and therefore determine the absolute mass scale
for neutrinos, a measurement that is otherwise very challenging. Furthermore, if the masses were



CMB-S4 and LSST forecast for Smn
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FIG. 3. Left: Forecast error on ⌃m⌫ achievable with CMB-S4 (grey), LSST shear (blue), LSST clustering (red), LSST clustering
and shear (green) and all together (orange), combined with Planck primary CMB data as described in Sec. IIIA, in the presence
of an uncertain dark energy equation of state. Center, right: Forecast error on w0 and wa with di↵erent combinations of probes,
revealing the degeneracies with ⌃m⌫ in each case. The corresponding forecast values are given in Tab. II.

FIG. 4. Achievable constraints on ⌃m⌫ (blue), w0 (bur-
gundy), wa (green) and ⌦k (yellow) as a function of the CMB
noise level in intensity NT . Forecasts are shown as a ratio
to the constraints achievable for a 1µKarcmin experiment.
Although w0, wa and ⌦k do not degrade significantly with
NT , the uncertainty on the sum of neutrino masses could im-
prove by ⇠ 40% from a Stage-3 experiment (⇠ 10µKarcmin)
to S4. Also shown (dotted blue) are the achievable con-
straints on ⌃m⌫ when w0, wa and ⌦k are fixed to their fiducial
⇤CDM values. The relative degradation with increasing CMB
noise level is much more modest in this case.

that an improved measurement of ⌧ is vital to break
the degeneracy with the amplitude of scalar perturba-
tions, not only for CMB-based measurements as found
in Allison et al. [7], but also for large-scale structure
surveys aiming to constrain neutrino mass. We also note
that, in the absence of S4, LSST alone would benefit
less from a better measurement of ⌧ , projecting only
a minimal improvement on �(⌃m⌫). Finally, we find
that improving the optical depth measurement has little
impact on the w0, wa and ⌦k forecast constraints.

Setup �(⌃m⌫) �(⌃m⌫) �(⌦k) �(w0) �(wa)
[meV] [meV] [⇥10�3]

S4 73 111 0.79 1.14 2.46
( + DESI BAO) 29 76 0.48 0.13 0.41
LSST-clustering 69 91 3.33 0.42 1.22
LSST-shear 41 120 2.99 0.19 0.57

LSST-shear+clust 32 72 2.06 0.11 0.33
S4+LSST 23 28 0.49 0.10 0.26

- 24 0.49 - -

TABLE II. Forecast constraints on ⌃m⌫ from various combi-
nations of probes combined with Planck primary CMB data as
described in Sec. IIIA. The first column assumes the ⇤CDM
model. The second allows for degeneracies with the spa-
tial curvature and a two-parameter dark energy equation of
state. The minimal mass sum in a normal hierarchy is ⌃m⌫ ⇡
60 meV, and ⌃m⌫ ⇡ 100 meV in an inverted hierarchy.

Setup �(⌃m⌫) �(⌃m⌫) �(⌦k) �(w0) �(wa)
(+CV-⌧) [meV] [meV] [⇥10�3]

LSST-clustering 69 91 3.3 0.42 1.20
LSST-shear 31 117 2.82 0.18 0.55

LSST-shear+clust 24 72 1.99 0.11 0.31
S4+LSST 14 21 0.49 0.10 0.26

- 15 0.49 - -

TABLE III. Forecast constraints on ⌃m⌫ as in Tab. II but
including a cosmic variance-limited ⌧ measurement matching
LiteBIRD sensitivity.

Additional BAO measurements

Primordial oscillations in the baryon-photon fluid im-
print characteristic geometric information in the distri-
bution of galaxies, known as Baryon Acoustic Oscilla-
tions (BAO). Massive neutrinos are sensitive to the BAO
scale through the angular diameter distance dA(z) and
expansion rate H(z). While galaxy clustering as mea-
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TABLE II. Forecast constraints on ⌃m⌫ from various combi-
nations of probes combined with Planck primary CMB data as
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model. The second allows for degeneracies with the spa-
tial curvature and a two-parameter dark energy equation of
state. The minimal mass sum in a normal hierarchy is ⌃m⌫ ⇡
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LSST-clustering 69 91 3.3 0.42 1.20
LSST-shear 31 117 2.82 0.18 0.55

LSST-shear+clust 24 72 1.99 0.11 0.31
S4+LSST 14 21 0.49 0.10 0.26

- 15 0.49 - -

TABLE III. Forecast constraints on ⌃m⌫ as in Tab. II but
including a cosmic variance-limited ⌧ measurement matching
LiteBIRD sensitivity.

Additional BAO measurements

Primordial oscillations in the baryon-photon fluid im-
print characteristic geometric information in the distri-
bution of galaxies, known as Baryon Acoustic Oscilla-
tions (BAO). Massive neutrinos are sensitive to the BAO
scale through the angular diameter distance dA(z) and
expansion rate H(z). While galaxy clustering as mea-

Ø Degeneracy with other cosmological parameters (Wk,w0,wa,…)
Ø Strong degeneracy between t and mn for CMB lensing 
Ø Need a measurement of t with CMB polarization (LiteBird)
Ø LSST+S4+LiteBird gives s(mn)~14 meV

LiteBird
arXiv:2803.07561, S. Mishra-Sharma et al.
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A wide and distant cosmological survey    

Probing primordial Universe with SF galaxies and quasars
Ø Wide survey: 10,000 deg2

Ø Three tracers covering   1.6<z<4.0 
ELGs, Lyman Break Galaxy (LBG) and QSOs

Ø100 nights per year for a 5-year MSE program
ØIn addition to BAO and RSD, test of Primordial Universe 15

bar thickness ∝ galaxy numbers 
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MSE :Forecast for Smn
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A most precise measurement of neutrino mass
Ø With CMB(S4), accuracy on neutrino masses s(Smn)~8 meV
Ø Measure the neutrino masses and test the mass hierarchy 
Ø Neutrino mass hierarchy at 5s as precise as DUNE (n beams) 

Current DESI
+Planck MSE

+Planck MSE + DESI

+Planck MSE + DESI

+CMB(S4)
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Summary
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ØShort-term: ~2025, DESI+Euclid+Planck s(Smn)~20 meV
Ø 3s on neutrino masses

ØMid-term: ~2030, LSST+CMB-S4+LiteBird s(Smn)~14 meV
Ø 4-5s on neutrino masses

ØLong-term: ~2035, MSE+CMB-S4 s(Smn)~8 meV
Ø Mass hierarchy at ~5s


