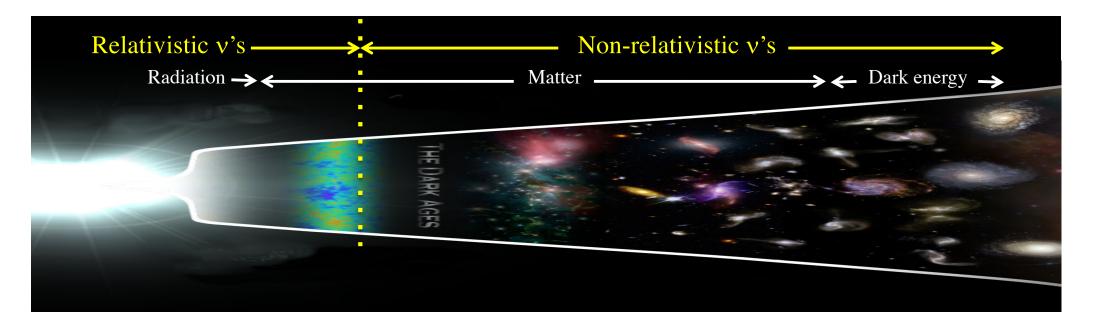
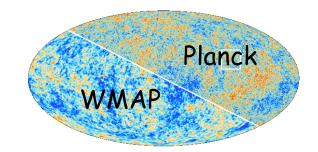
Neutrino masses with multi-probes


```
Christophe Yèche
CEA-Saclay
```

Dark Energy Workshop, Paris, June 12, 2019

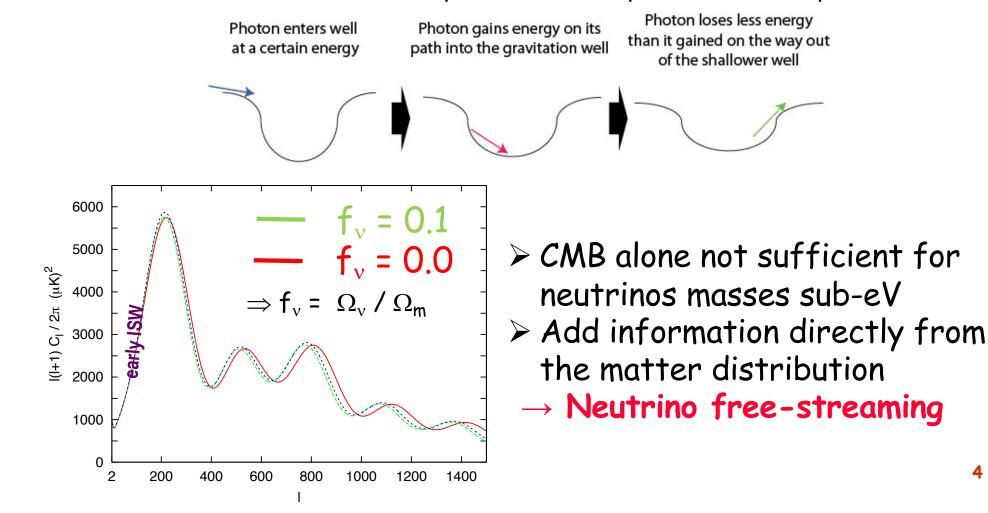

Cosmic neutrino background

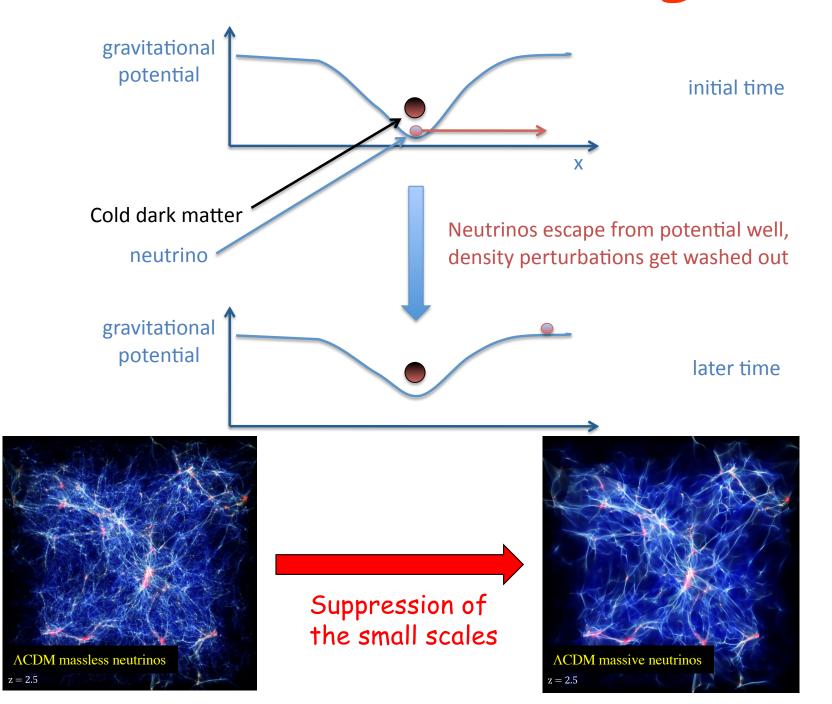
At early times $(T_v \gg m_v)$, neutrinos contribute as radiation $\rho_{\nu} \propto T_{\nu}^4$ At late times $(T_v \ll m_v)$, neutrinos contribute as matter $\rho_{\nu} = m_{\nu}n_{\nu}$ Non-relativistic transition $\Omega_{\nu} = \frac{\Sigma m_{\nu}}{93.1 eV}$


Non-relativistic transition $m_{\nu} \sim \langle p \rangle = \frac{\int pf(p)d^3p}{\int f(p)d^3p} = 3.15 T_{\nu} \text{ with } f(p) = \frac{1}{e^{p/T_{\nu}} + 1}$

$$z_{nr} \sim 1900 \; \frac{m_{\nu}}{1 \,\mathrm{eV}} \quad \longrightarrow$$

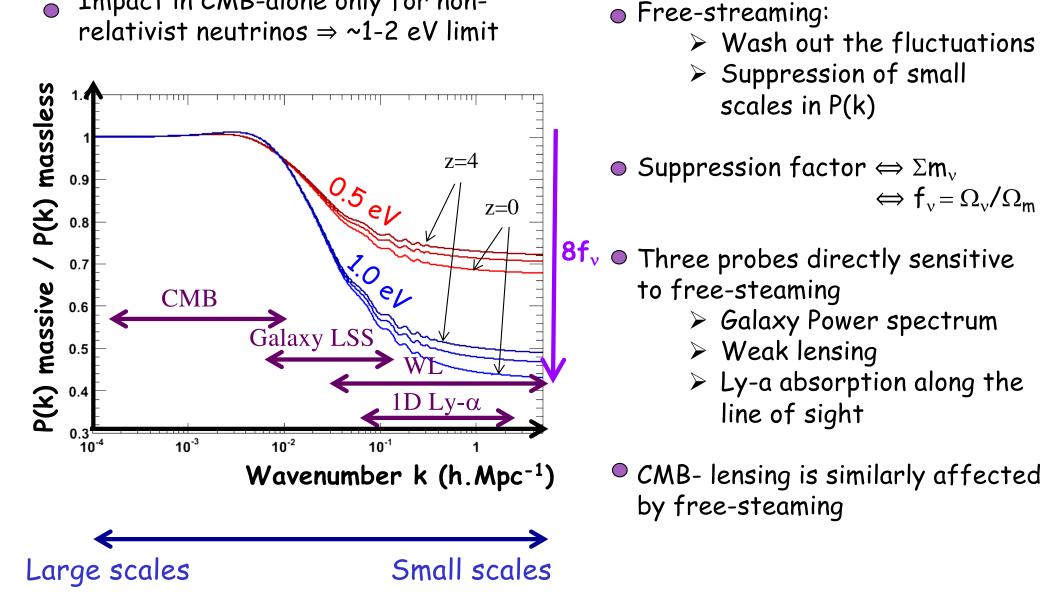
At recombination $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7)$: relativistic $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7)$: matter-like



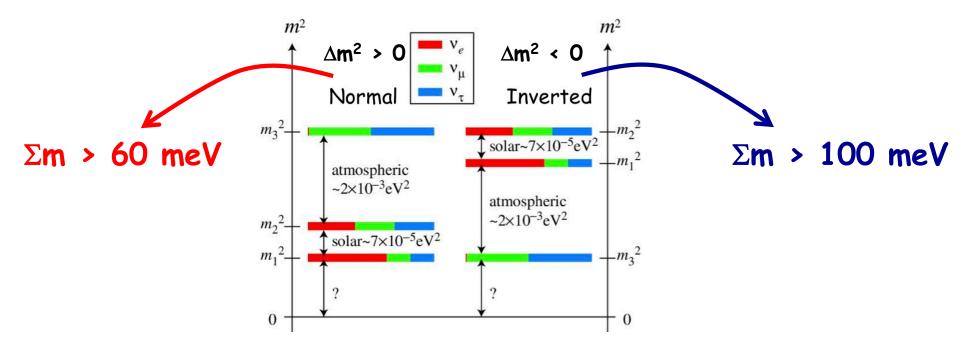


4

- $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7 \text{ eV})$ relativistic at CMB
 - \Rightarrow "No" impact on baryon-photon plasma
 - \Rightarrow Subtle changes in peak position & amplitude
 - \Rightarrow Main effect is the early Integrated Sachs-Wolfe effect (ISW) after recombination (50<1<300) - position and amplitude of first peak.



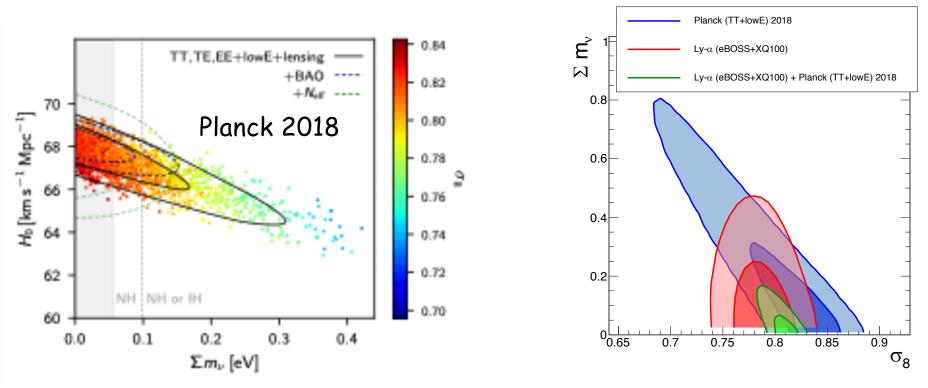
Free-streaming



Impact on matter power spectrum

Impact in CMB-alone only for non-

Neutrino Masses and Hierarchy

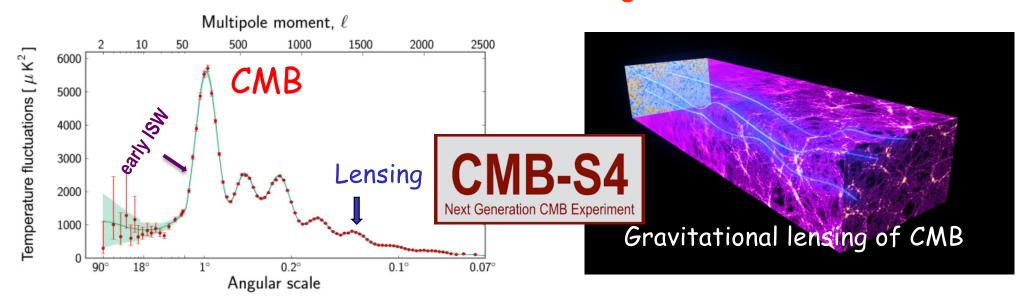


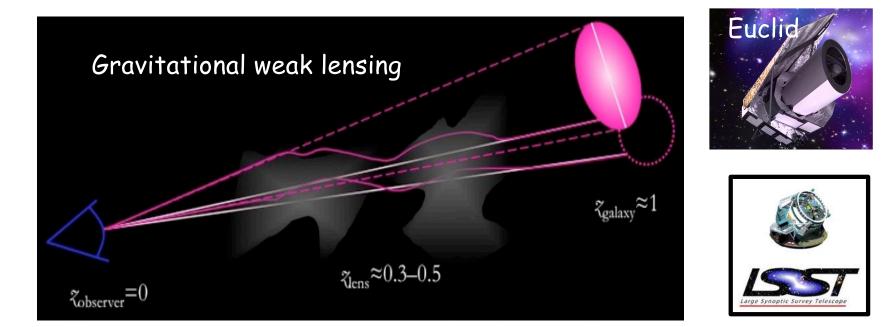
An answer to mass hierarchy with cosmological neutrinos

- > Particles Physics: atmospheric and solar oscillations
- > No constraint on absolute masses
- > 2 possible schemes: normal vs inverted hierarchy
- > With $\sigma(\Sigma m_v)$ ~20/12 meV, we measure the mass of the neutrinos with a precision better than $3\sigma/5\sigma$

> With $\sigma(\Sigma m_v)$ ~8 meV, we may have a decision at 5σ on, mass hierarchy

Current limits on Σm_{ν}

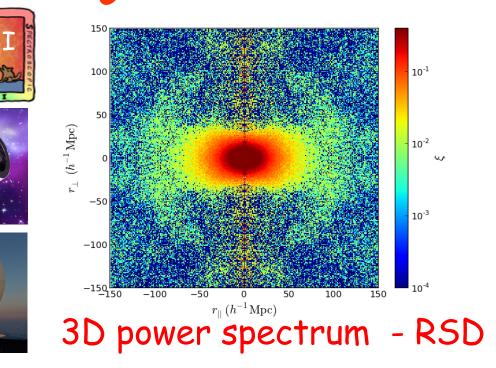


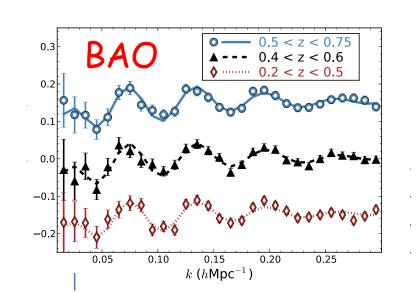

> With Ly- α alone (SDSS/eBOSS+VLT/XQ100): $\Sigma m_v < 0.35 \text{ eV}$ @95%CL > With Planck 2018 alone:

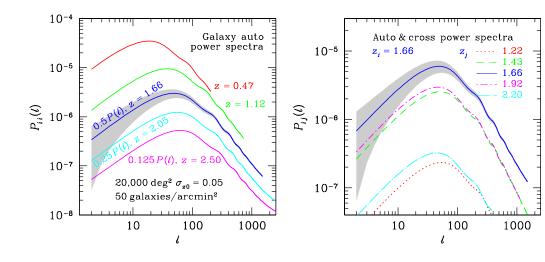
$\Sigma m_v < 0.54 \text{ eV}$ @95%CL > Ly- α combined with CMB (Planck 2018) (just TT) Σm_v < 0.12 eV @95%CL > BAO combined with CMB (Planck 2018) (TT,TE,EE and lensing) Σm_v < 0.12 eV @95%CL

Forecast on neutrino masses with future cosmological projects

Probes -Projects

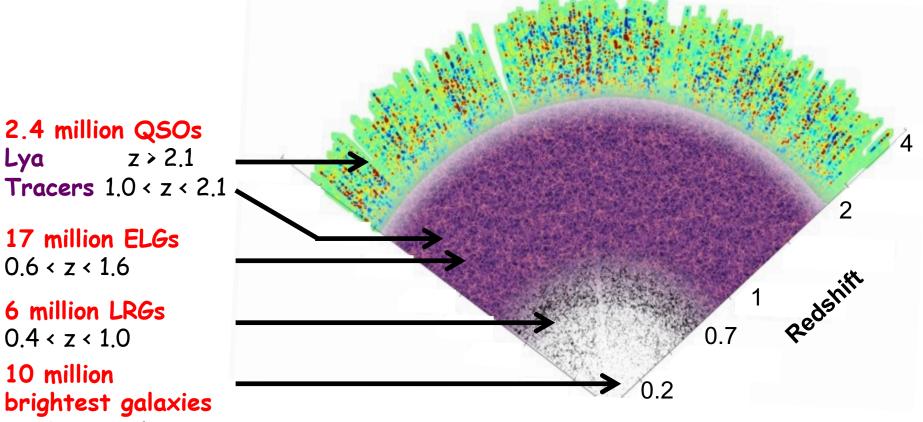



Probes - Projects


DES

Fuclio

MSE



Angular power spectrum

DESI : 3D mapping of Universe

Five target classes spanning redshifts $z=0.05 \rightarrow 3.7$ for clustering ~35 million redshifts over 14,000 sq. degrees in five years

0.05 < z < 0.4

DESI and Euclid forecast for Σm_{v}

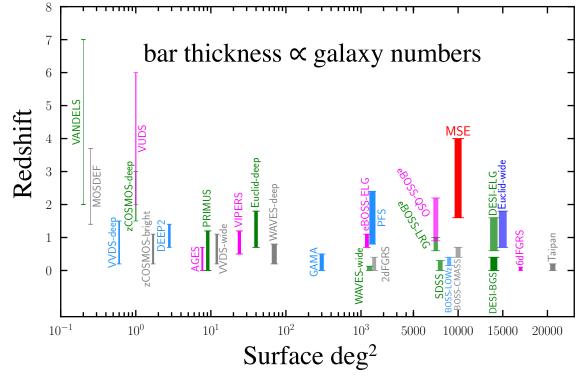
Data	$\sigma_{\Sigma m_{\nu}}$ [eV]	$\sigma_{N_{ u,\mathrm{eff}}}$
Planck	0.56	0.19
Planck + BAO	0.087	0.18
$Gal (k_{\rm max} = 0.1 h \mathrm{Mpc}^{-1})$	0.030	0.13
$Gal \ (k_{\rm max} = 0.2h \mathrm{Mpc}^{-1})$	0.021	0.083
Ly- α forest	0.041	0.11
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.020	0.062

\wedge								
	Modified Gravity	Dark Matter Initial Conditions		Dark Energy				
Parameter	γ		m√eV		f_{NL}	<i>w</i> _p	Wa	FoM
Euclid Primary	0.010		0.027		5.5	0.015	0.150	430
Euclid All	0.009		0.020		2.0	0.013	0.048	1540
Euclid+Planck	0.007		0.019		2.0	0.007	0.035	4020
Current	0.200		0.580		100	0.100	1.500	~10
Improvement Factor	30		30		50	>10	>50	>300

> DESI and Euclid combined with Planck give $\sigma(m_v)$ ~20 meV

CMB-S4 and LSST forecast for Σm_{ν}

Setup	$\sigma(\Sigma m_{\nu})$	$\sigma(\Sigma m_{\nu})$	$\sigma(\Omega_k)$	$\sigma(w_0)$	$\sigma(w_a)$
	[meV]	[meV]	$[\times 10^{-3}]$		
S4	73	111	0.79	1.14	2.46
(+ DESI BAO)	29	76	0.48	0.13	0.41
LSST-clustering	69	91	3.33	0.42	1.22
LSST-shear	41	120	2.99	0.19	0.57
LSST-shear+clust	32	72	2.06	0.11	0.33
S4+LSST	23	28	0.49	0.10	0.26
		24	0.49	-	-

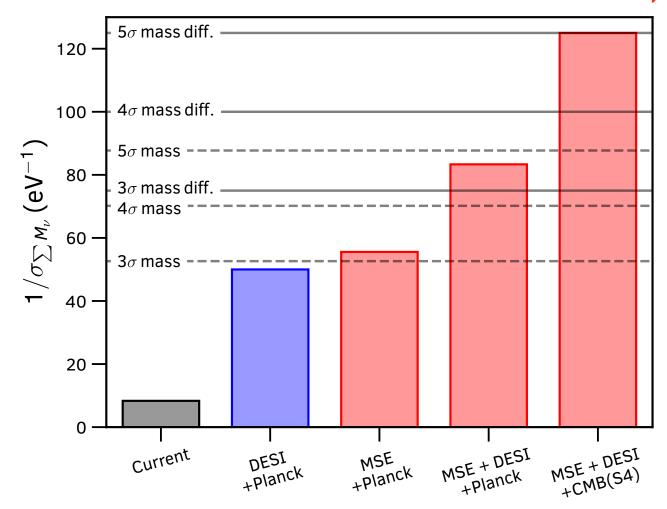


Setup	$\sigma(\Sigma m_{\nu})$	$\sigma(\Sigma m_{\nu})$	$\sigma(\Omega_k)$	$\sigma(w_0)$	$\sigma(w_a)$
$(+CV-\tau)$	[meV]	[meV]	$[\times 10^{-3}]$		
LSST-clustering	69	91	3.3	0.42	1.20
LSST-shear	31	117	2.82	0.18	0.55
LSST-shear+clust	24	72	1.99	0.11	0.31
S4+LSST	14	21	0.49	0.10	0.26
		15	0.49	-	-

arXiv:2803.07561, S. Mishra-Sharma et al.

- > Degeneracy with other cosmological parameters ($\Omega_k, w_0, w_a, ...$)
- \blacktriangleright Strong degeneracy between τ and m_{ν} for CMB lensing
- > Need a measurement of τ with CMB polarization (LiteBird)
- > LSST+S4+LiteBird gives $\sigma(m_v)$ ~14 meV

A wide and distant cosmological survey



Probing primordial Universe with SF galaxies and quasars

- Wide survey: 10,000 deg²
- > Three tracers covering 1.6<z<4.0

ELGs, Lyman Break Galaxy (LBG) and QSOs >100 nights per year for a 5-year MSE program >In addition to BAO and RSD, test of Primordial Universe

MSE : Forecast for Σm_{ν}

A most precise measurement of neutrino mass

> With CMB(S4), accuracy on neutrino masses $\sigma(\Sigma m_v)$ ~8 meV

- > Measure the neutrino masses and test the mass hierarchy
- > Neutrino mass hierarchy at 5σ as precise as DUNE (v beams) ¹⁶

Short-term: ~2025, DESI+Euclid+Planck σ(Σm_v)~20 meV
3σ on neutrino masses

Mid-term: ~2030, LSST+CMB-S4+LiteBird σ(Σm_v)~14 meV
4-5σ on neutrino masses

Long-term: ~2035, MSE+CMB-S4 σ(Σm_v)~8 meV
Mass hierarchy at ~5σ