

Fast Monte Carlo simulations of proton therapy treatments

Kevin Souris, Marie Cohilis

Disclosure

Kevin Souris is supported by a research grant from Ion Beam Application (IBA s.a.)

Proton therapy dose calculation Impact of heterogeneities

Proton therapy dose calculation Impact of range shifters

Proton therapy dose calculation Algorithms

Pencil Beam algorithm

- Macroscopic models
- Approximate method
- Fast computation RayStation: ~ 30 s

Monte Carlo algorithm

- Microscopic models
- Most accurate method
- Slower computation
 GATE/Geant4: ~ 1-5 h

Need to speed-up the calculation for use in clinical routine:

openmcsquare.org

- Fast Monte Carlo code
- Optimized for PBS proton therapy simulations
- Open source

Simplified transport algorithm: voxelized geometry

Simplified physical models:

Fully simulated	Not simulated		
Proton EM interactions	Secondary electrons		
Proton nuclear interactions	• Neutral particles (photons, neutrons)		
 Secondary heavy charged particles (protons, alphas, deuterons) 			

Fully exploits CPU ressources:

Multi-core calculation

Computation time:

<10 min (Laptop) <1 min (Computation server)

for the simulation of a typical treatment with 10 millions primary protons

Fully exploits CPU ressources:

- Multi-core calculation
- Vector calculation

Computation time:

<10 min (Laptop) <1 min (Computation server)

for the simulation of a typical treatment with 10 millions primary protons

Validation with GATE/Geant4

Integrated dose (MeV cm^2/g)

Geant4 (Binary Cascade) 20 Geant4 (Precompound) MCsquare 15 Bone Bone 10 5 0 15 5 10 20 25 0 Depth (cm)

Heterogeneous phantom (200 MeV)

Different nuclear models:

Geant4:

Binary Cascade, Precompound

MCsquare: ICRU63 cross sections

GATE version 6.2 Geant4 version 9.5 p2

Validation with GATE/Geant4

Prompt gamma imaging

Simulated prompt gamma profiles

(200 MeV - Heterogeneous phantom)

Validation with measurements

	Film Plane (Gamma Index)			TLD	
	Axial	Coronal	Sagittal	Sup	Inf
TPS	66%	82%	83%	0.96	0.96
TOPAS	93%	98%	99%	0.99	0.99
MCsquare	96%	99%	98%	0.99	0.99

Measurements performed in the IROC Lung phantom by Sheng Huang (UPenn)

MCsquare I/O

Most inputs / outputs are compatible with GATE

The OpenPATh initiative

Monte Carlo simulations Commissioning tools

14

Examples of OpenPATh applications:

- Log-based QA of proton therapy treatments
- Adaptive therapy workflows
- Robust treatment optimization and evaluation
- 4D CBCT reconstruction and motion analysis
- Prompt gamma imaging and analysis

Examples of OpenPATh applications:

- Log-based QA of proton therapy treatments
- Adaptive therapy workflows
- Robust treatment optimization and evaluation
- 4D CBCT reconstruction and motion analysis
- Prompt gamma imaging and analysis

Log-files

Examples of OpenPATh applications:

- Log-based QA of proton therapy treatments
- Adaptive therapy workflows
- Robust treatment optimization and evaluation
- 4D CBCT reconstruction and motion analysis
- Prompt gamma imaging and analysis

Examples of OpenPATh applications:

- Log-based QA of proton therapy treatments
- Adaptive therapy workflows
- Robust treatment optimization and evaluation
- 4D CBCT reconstruction and motion analysis
- Prompt gamma imaging and analysis

myQA iON product released by IBA dosimetry

Conclusions

MCsquare:

- Fast Monte Carlo simulations
- Dedicated to PBS proton therapy

The OpenPATh initiative:

- Accelerates research
- Helps the transition from research to the clinic

Perspectives:

Interface GATE with OpenPATh tools

openmcsquare.org

Thank you

