GATE/GEANT4 AS A MONTE CARLO SIMULATION TOOLKIT FOR LIGHT ION BEAM DOSIMETRY

M. Bolsa Ferruz¹, H. Palmans^{1,2}, A. Carlino¹, M. Stock¹, E. Traneus³ and L. Grevillot¹

- ¹ EBG MedAustron GmbH, Wiener Neustadt, Austria.
- ² National Physical Laboratory, Teddington, UK.
- ³ RaySearch Laboratories AB, Stockholm, Sweden.

Motivation

End-to-end testing

- Logistic chain of RT treatment using a phantom containing dosimeters (IC and alanine)
- Alanine dosimetry performed in collaboration with the National Physics Laboratory (NPL) as a **dosimetry auditing** tool

Several parameters for dose calculation need to be determined

PURPOSE OF THIS WORK:

To use GATE/Geant4 as a toolkit for ion beam dosimetry (protons and carbon ions)

Main focus on the calculation of:

Water-to-medium stopping power ratio (SPR)

Relative effectiveness (RE) of solid-state detectors

$$s_{med,det} = \frac{(E_{dep})_{med} / m_{med}}{(E_{dep})_{med} / m_{med} \left(\frac{(S/\rho)_{det}(T_j)}{(S/\rho)_{med}(T_j)}\right)} =$$

$$S_{med,det} = \frac{(E_{dep})_{med} / m_{med}}{(E_{dep})_{med} / m_{med} \left(\frac{(S/\rho)_{det}(T_j)}{(S/\rho)_{med}(T_j)}\right)} = \frac{T_j \leq E_{cut}}{(E_{dep})_{med} / m_{med} \left(\frac{(S/\rho)_{det}(T_j)}{(S/\rho)_{med}(T_j)}\right)} = \frac{T_j \leq E_{cut}}{(E_{dep})_{med} / m_{med}}$$

$$\frac{1}{m_{med}} \left[\sum_{j=0}^{N} e_{j} \right]_{T_{j} > E_{cut}} + \frac{1}{m_{med}} \left[\sum_{j=0}^{N} T_{j} \right]_{T_{j} \leq E_{cut}}$$

$$\frac{1}{m_{med}} \left[\sum_{j=0}^{N} e_{j} \frac{(S/\rho)_{det}(T_{j})}{(S/\rho)_{med}(T_{j})} \right]_{T_{j} > E_{cut}} + \frac{1}{m_{med}} \left[\sum_{j=0}^{N} T_{j} \frac{(S/\rho)_{det}(E_{cut})}{(S/\rho)_{med}(E_{cut})} \right]_{T_{j} \leq E_{cut}}$$

❖ "GateRTion 1.0" based on GATE 8.1 and GEANT4 10.03.p03

$$s_{med,det} = \frac{(E_{dep})_{med} / m_{med}}{(E_{dep})_{med} / m_{med} \left(\frac{(S/\rho)_{det}(T_j)}{(S/\rho)_{med}(T_j)}\right)} = \frac{T_j \leq E_{cut}}{T_j \leq E_{cut}}$$

$$\frac{1}{m_{med}} \left[\sum_{j=0}^{N} e_{j} \right]_{T_{j} > E_{cut}} + \frac{1}{m_{med}} \left[\sum_{j=0}^{N} T_{j} \right]_{T_{j} \leq E_{cut}} \\ \frac{1}{m_{med}} \left[\sum_{j=0}^{N} e_{j} \frac{(S/\rho)_{det}(T_{j})}{(S/\rho)_{med}(T_{j})} \right]_{T_{j} > E_{cut}} + \frac{1}{m_{med}} \left[\sum_{j=0}^{N} T_{j} \frac{(S/\rho)_{det}(E_{cut})}{(S/\rho)_{med}(E_{cut})} \right]_{T_{j} \leq E_{cut}}$$

Continuous energy loss $e_i = S_w \cdot \Delta s_i$

 $S_w = stopping power$ $\Delta S_i = track length$

i Small stopping power variation along the step!

 $\eta_{\rm aln}(E_j,Z_i)$ as published by R. Herrmann [PhD thesis] based on "Hansen and Olsen model"

 $\eta_{\text{aln}}(E_j, Z_i)$ as published by R. Herrmann [PhD thesis] based on "Hansen and Olsen model"

$$\bar{\eta}_{al} = \frac{\frac{1}{m_w} \left[\sum_{j=0}^N e_j \, \eta_{aln} \big(E_j, Z_i \big) \frac{(S/\rho)_{al} (T_j)}{(S/\rho)_w (T_j)} \right]_{T_j > E_{cut}} + \frac{1}{m_w} \left[\sum_{j=0}^N T_j \, \eta \frac{(S/\rho)_{al} (E_{cut})}{(S/\rho)_w (E_{cut})} \right]_{T_j \leq E_{cut}}}{D_{al}}$$

 $\eta_{\rm aln}(E_j,Z_i)$ as published by R. Herrmann [PhD thesis] based on "Hansen and Olsen model"

❖ "GateRTion 1.0" based on GATE 8.1 and GEANT4 10.03.p03

$$\bar{\eta}_{al} = \frac{\frac{1}{m_w} \left[\sum_{j=0}^{N} e_j \, \eta_{aln} \left(E_j, Z_i \right) \frac{(S/\rho)_{al} (T_j)}{(S/\rho)_w (T_j)} \right]_{T_j > E_{cut}} + \frac{1}{m_w} \left[\sum_{j=0}^{N} T_j \, \eta \, \frac{(S/\rho)_{al} (E_{cut})}{(S/\rho)_w (E_{cut})} \right]_{T_j \leq E_{cut}}}{D_{al}}$$

For comparison, RE calculations were also done using:

Proton Monte Carlo dose engine of the RaySearch (RS) Treatment Planning System (TPS) (v5.99.50 research version)

Water-to-air SPR (protons)

$$\rightarrow I_w = 78eV$$

- Treatment plan verification at MA:
 - → Patient plan is delivered to a water phantom
 - → The dose deposited is measured at different positions with a 3D block of 24 PinPoint IC.
- 1.3% variation in water-to-air SPR

Water-to-detector SPR (protons)

- Comparison of literature data with GATE calculations
 - → 150 MeV proton beam
 - \rightarrow 0.5-2.5% difference

Results Alanine detectors (protons)

Water phantom

Experimental data from proton beam commissioning at MedAustron 2016/2017

Carlino, A., et al. PMB 63.5 (2018): 055001.

NPL Report IR 48

Ableitinger, A., et al. Radiotherapy and Oncology 108.1 (2013): 99-106.

Alanine detectors (protons)

Water phantom

	SPR	RE		
	GATE	RS	GATE	Deviation
Square field E=179.2 MeV (entrance)	1.019	1	1.00092	-0.10%
Box R _{res} = 4cm	1.015	0.9908	0.9891	0.18%
Box $R_{res} = 2cm$	1.014	0.9824	0.9810	0.14%

- Statistical uncertainty in GATE less than 1%
- RE uncertainty ~2.5%

Alanine detectors (protons)

Water phantom

	SPR	RE		
	GATE	RS	GATE	Deviation
Square field E=179.2 MeV (entrance)	1.019	1	1.00092	-0.10%
Box R _{res} = 4cm	1.015	0.9908	0.9891	0.18%
Box $R_{res} = 2cm$	1.014	0.9824	0.9810	0.14%

Comparison of alanine and IC dosimetry using RE calculated with RS or GATE

	Deviation (RS)	Deviation (GATE)
Square field E=179.2 MeV (entrance)	0.61%	-0.34%
Box R _{res} = 4cm	-0.30%	-0.42%
Box R _{res} = 2cm	-1.24%	-0.91%

Alanine detectors (protons)

Polystyrene phantom

Experimental data from proton beam commissioning at MedAustron 2016/2017

Carlino, A., et al. PMB 63.5 (2018): 055001.

NPL Report IR 48

Ableitinger, A., et al. Radiotherapy and Oncology 108.1 (2013): 99-106.

Alanine detectors (protons)

- Polystyrene phantom
- Comparison of alanine and IC dosimetry using RE calculated with GATE

Conclusions and perspectives

- Relative effectiveness and stopping power ratio tools were successfully implemented
- → Improvement of RE tools started during Gate Hackathon yesterday!!
- Water-to-medium SPR results for protons has been compared with literature data
- Validation of the RE implementation based on commissioning measurements at MedAustron and comparison with RS was done
- it will be extended to anthropomorphic phantoms
- Application of these tools to carbon ion end-to-end testing is ongoing
- The use of ICRU 90 for GATE calculations is foreseen

Thanks to...

MedAustron Medical Physics team and Monte Carlo group

Medical University of Vienna

S. Greilich and L. N. Burigo (DKFZ)

V. Ivantchenko (CERN)
Geant4 Collaboration

GATE Collaboration

Thanks for your attention