

Department of Biomedical Engineering, University of California Davis

eroncali@ucdavis.edu

TARE Clinical Workflow

Planning

~2 weeks

Major impediments: Dose prediction and dose verification

Patient referred for TARE

Y-90 activity calculation

BSA model (resin spheres)

Repeat angiogram

Hepatic angiogram

^{99m}Tc-MAA SPECT

Treatment How did we do? Anterior Posterior

Better with PET?

Gamma or SPECT

Dose Calculation: Challenges

- MIRD •
- Voxel S-value
- Dose kernel •
- Full Monte Carlo

Computational burden

Computational Fluid Dynamics Simulation for 3D Dosimetry

Personalized treatment planning

Segmentation of Patient Hepatic Arterial Tree from Cone Beam CT

CBCT acquired on breath hold during planning

CBCT volume (0.25 mm pixel size, 1 mm slices)

Amirtaha Taebi

Preliminary CFD Simulation

Blood fluid properties Boundary conditions

Amirtaha Taebi

A Multimodal Imaging Approach

Putting it together for flow simulation...

Flow Simulation: Multiscale Modeling

UCDAVIS

 Segmented arterial tree combined with 3-element Windkessel model (RCR) for arterioles

 RCR circuit components are tuned using a whole-body 0D model

> Taebi, Vu, Roncali, "Multi-scale computational fluid dynamics modeling for personalized liver cancer radioembolization dosimetry"

Blood Flow and Microsphere Distribution

UCDAVIS

- Lobar injection:
 segments received 5%-40%
- Selective injection: tumor received 82%

→ Tumor received 61% of microspheres after both injections

Taebi, Vu, Roncali

3D Microsphere Distribution

Dose Kernel Calculation

Dose point kernel (DPK): Efficient, accurate solution for uniform tissues Monte Carlo: Toward accurate patient-specific absorbed dose... ...But computationally intensive Emilie Roncali, Gate Technical Workshop, July 4th 2019

Gy

Absorbed Dose distribution

Patient specific

Y-90 Dose Kernel: Energy Spectrum

 Use Fermi theory for beta decay to calculate energy distribution N(E):

$$N(E) = C\sqrt{E^2 + 2m_ec^2 \cdot E} \cdot (Q - E)^2 \cdot (E + m_ec^2) \cdot F(Z, E) \cdot S(E)$$

- Max energy Q = 2.28 MeV
- Mean energy = 936 keV

Y-90 Dose Kernel: Use GATE Dose Actor

Sphere, voxel number and total space calculated to match that of desired voxel size

⁹⁰Y: beta isotropic point source defined by • Collect ~5 10⁵ -10⁶ events in 280 x 280 x 280

3D Dose distribution

Kernel profile (3.64 mm)

Dose distribution (projection)

¹⁷⁷Lu Dosimetry work at UCSF

Sara St James

We have open post-doctoral positions! Contact sara.st.james@ucsf.edu

Acknowledgments

Department of Biomedical Engineering

Amirtaha Taebi, Ph.D. Simon Cherry, Ph.D. MIPET group Katya Mikhaylova, Ph.D.

Department of Mechanical Engineering

Yuki Tsuzuki Ralph Aldredge, Ph.D. Anthony Wexler, Ph.D.

Department of Radiation Oncology

Stanley Benedict, Ph.D.

Department of Radiology

Catherine Vu, M.D. Bahman Roudsari, MD, Ph.D. Ramsey Badawi, Ph.D. Denise Caudle, CNMT Michael Rusnak, CNMT Benjamin Spencer, Ph.D.

Funding

