

GATE activities @ CRCT

Dosimetry for Nuclear Medicine and Radiotherapy

maxime.chauvin@inserm.fr

"Multiscale dosimetry for radiotherapy optimization"

Internal Radiotherapy (2 Postdocs, 2 PhDs, 3 Researchers):

- SPECT simulations: Gunjan Kayal (PhD)
- Slicer tool for dosimetry: Alex Vergara Gil (PhD)
- OpenDose: Maxime Chauvin (Postdoc)

CATE opengatecollaboration.org

External Radiotherapy (1 Postdoc, 2 PhDs, 2 MScs, 3 Researchers):

- Dm to Dw conversion: Victoria Fonteny (MSc)
- SBRT Interplay: Jeremy Leste (PhD)
- SBRT EPID dosimetry: A. Rita Barbeiro (Postdoc)

7 users-developers

SPECT simulations: Gunjan Kayal (PhD)

Heads Circular Orbit

Orbiting

Rotating a volume around any axis during a simulation is possible using the orbiting motion. degrees per second, the commands are:

/gate/SPECThead/moves/insert orbiting /gate/SPECThead/orbiting/setSpeed N. deg/s /gate/SPECThead/orbiting/setPoint1 0 0 0 cm /gate/SPECThead/orbiting/setPoint2 1 0 0 cm

extracted
M files of
2

Work presented @ MCMA 2019

Heads Non Circular Orbit

Generic repeater move

You can combine generic repeater and generic move to allow different repeated configurations according to time. This is for example useful to descrit which move according to each beam.

/gate/myvolume/moves/insert genericRepeaterMove /gate/myvolume/genericRepeaterMove/setPlacementsFilename data/myvolume.placements /gate/myvolume/genericRepeaterMove/useRelativeTranslation 1

######	Lis	t d	σf	pl	acer	nent	: (t	ranslat	Lo	n	ar	nd	rot	at	ior	1)								
######	Col	umr	1 1	1		is	rot	ationAn	j 1	е	ir	n d	legi	ee	e									
######	Col	umr	ıs	2,	3,4	are	e ro	tation a	ax.	is	5													
######	Col	amr	ıs	5,	6,7	are	e tr	anslati	on	i	n	mn	n											
Time s																								
Number	ofpla	ace	eme	ent	s 3																			
Rotatio	on de	eg																						
Transla	atio	n r	nm																					
#Time	# P	lad	e	nen	t 1			#	P	la	ce	eme	ent	2			ŧ	¥ 1	214	ace	ement	3		
0	10	0	1	0	20	0	0	1)	0	1	0	8	80	0	0	1	LO	0	1	0	-60	0	0
1	20	0	1	0	20	10	0	2)	0	1	0	8	30	10	0	2	20	0	1	0	-60	10	0
2	30	1	1	0	20	0	0	3)	1	1	0	8	80	0	0	3	30	1	1	0	-60	0	0
4	40	0	1	1	20	0	40	4)	0	1	1	8	80	0	40	4	10	0	1	1	-60	0	40

The 'NumberOfPlacements' is needed to indicate how many different repetition are performed at each motion.

What we need:

300

250 200

> 150 100

45°

135°

270°

315°

225°

Now we have:

ImageNestedParametrisedVolume

/gate/world/daughters/name anyname /gate/world/daughters/insert tessellated

000000000000

Work presented @ MCMA 2019

90°

From Voxelization to Tessellation:

Simulation:

Inserm

From science to health

La science pour la santé

Collimator (white) ; Crystal (yellow); PMTs (blue); Electronics (red); Phantom (purple)

Work presented @ MCMA 2019

OpenGATE technical meeting - Lyon, France - 4th July 2019

PAUL SABA

Simulation Results compared to Experimental Images

Experimental SPECT

Siemens Symbia T2 5%" Nal crystal MEGP collimator 2 detector heads3 energy windows:60 proj per head208 keV (20%)20s per proj178 keV (10%)241 keV (10%)

Simulated SPECT

Activity*
178.6 MBq in spleen
108.7 MBq in right kidney cortex
16.1 MBq in right kidney medulla

din 1

Inserm

From science to health

La science nour la santé

PAUL

Mean Squared Error (MSE): **113.001** Structural Similarity Index (SSIM): **0.9456** Peak Signal to Noise Ratio (PSNR): **24.952**

Work presented @ MCMA 2019

3DSlicer tool for dosimetry: Alex Vergara Gil (PhD)

3DSlicer					0. 17001111	140	T:CHRT DoseRate MonteCarlo summary + PRCI MonteCarlo B_twer + PRCI MonteCarlo B_twer + PRCI MonteCarlo B2_Many + PRCI MonteCarlo B2_Many
lelp & Acknowledgement		<u> </u>			3	(10)- (10)-	
Reload & Test						m) etc.	
						Bow	
arameters							
1 sensitivity 37.3733976156	- Bd/counts	F: JO:DOSE Mo	ontlo 4HR	(50%)		20-	
pe Lu-1//	•	B. JO.CICI CI	41110			0 20 4	de de rós rás tak de
sprocessing		* Y 🖶 🥅			R: -6.084mm	* G 🕸 🧰	A: 0.750mm
Rename files Resan	mpie CTS Rescale			/			
gistration							
ence Volume: J3:ACSC SPECT 7	72HR 👻			SER			
Exe	ecute			() EV			a section and
sorbed Dose Rate calculation				123			
ity threshold (%)	5.0%	-					
	0.070						
bed dose rate algorithm Local Er	nergy Deposition (LED)						
rbed dose rate algorithm Local Er Calculate Do	nergy Deposition (LED) vise Rate Images	F: J0:DOSE Mo B: J0:CTCT CI	ontlo 4HR `4HR	(50%)	I	F: J0:DOSE Mont. B: J0:CTCT CT 4F	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation	nergy Deposition (LED) ose Rate Images	F: J0:DOSE Me B: J0:CTCT CT	ontlo 4HR ` 4HR	(50%)	Ĩ	F: J0:DOSE Mont. B: J0:CTCT CT 4F	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation ence Segmentation: Segmentation	nergy Deposition (LED) v ose Rate Images on v	F: J0:DOSE M B: J0:CTCT CI	ontlo 4HR ° 4HR B	(50%) C	P	F: J0:DOSE Mont. B: J0:CTCT CT 4F	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation ence Segmentation: Segmentatio Propagate	ergy Deposition (LED) * see Rate Images on * Segmentation	F: J0:DOSE Ma B: J0:CTCT CT T A 1 Segment	bntlo 4HR 4HR B Mass (kg)	(50%) C Data points integral (Gy)	D Absorbed Dose (Gy)	F: J0:DOSE Mont. B: J0:CTCT CT 4F E Difference (%)	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do mentation nce Segmentation: Segmentatio Propagate ment Tables and Plots	ergy Deposition (LED)	F: J0:DOSE M B: J0:CTCT CI T A 1 Segment 2 DR_Liver	ntlo 4HR ^ 4HR В Mass (kg) 1.62475	(50%) C Data points integral (Gy) 12.6454	D Absorbed Dose (Gy) 15.493	F: J0:DOSE Mont. B: J0:CTCT CT 4F E Difference (%) 18.3799	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation Ince Segmentation: Segmentation Propagate gment Tables and Plots Create ACTM Tables	eregy Deposition (LED)	F: J0:DOSE Mo B: J0:CTCT CT T A 1 Segment 2 DR_Liver 3 DR Spleen	B Mass (kg) 1.62475 0.0895185	(50%) C Data points integral (Gy) 12.6454 3.12271	D Absorbed Dose (Gy) 15,493 3,55613	F: J0:DOSE Mont. B: J0:CTCT CT 4F E Difference (%) 18.3799	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation ance Segmentation: Segmentation Propagate gment Tables and Plots Create ACTM Tables Create ACTM Plots	ergy Deposition (LED) see Rate Images on Create DOSE Tables Create DOSE Flots	F: J0:DOSE Me B: J0:CTCT CT T A 1 Segment 2 DR_Liver 3 DR_Spleen	B Mass (kg) 1.62475 0.0895185	(50%) C Data points integral (Gy) 12.6454 3.12271	D Absorbed Dose (Gy) 15.493 3.55613	F: J0:DOSE Mont. B: J0:CTCT CT 4F E Difference (%) 18.3799 12.1878	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation Ince Segmentation: Segmentation Propagate Imment Tables and Plots Create ACTM Tables Create ACTM Plots ie integration	ergy Deposition (LED) see Rate Images on Create DOSE Tables Create DOSE Plots	F: J0:DOSE M B: J0:CTCT CI T A 1 Segment 2 DR_Liver 3 DR_Spleen 4 DR_LKidney	B Mass (kg) 1.62475 0.0895185 0.115164	(50%) C C Data points integral (Gy) 12.6454 3.12271 3.24264	D Absorbed Dose (Gy) 15.493 3.55613 3.65565	E J0:DOSE Mont. B: J0:CTCT CT 4H E Difference (%) 18.3799 12.1878 11.2979	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation excession Segmentation: Segmentation Propagate gment Tables and Plots Create ACTM Tables Create ACTM Plots the integration poration Mode linear	ergy Deposition (LED) see Rate Images on Create DOSE Tables Create DOSE Plots	F: J0:DOSE M B: J0:CTCT CT A 1 Segment 2 DR_Liver 3 DR_Spleen 4 DR_LKidney 5 DR_RKidney	B Mass (kg) 1.62475 0.0895185 0.115164 0.0996514	(50%) C Data points integral (Gy) 12.6454 3.12271 3.24264 4.00441	D Absorbed Dose (Gy) 15.493 3.55613 3.65565 4.52617	E: J0:DOSE Mont. B: J0:CTCT CT 4H Difference (%) 18:3799 12:1878 11:2979 11:5276	lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do mentation Ince Segmentation: Segmentatio Propagate gment Tables and Plots Create ACTM Tables Create ACTM Plots the integration oration Mode Inear ation Algorithm trapezoid	ergy Deposition (LED) v see Rate Images on v Segmentation Create DOSE Tables Create DOSE Plots v	F: J0:DOSE M B: J0:CTCT CI T A 1 Segment 2 DR_Liver 3 DR_Spleen 4 DR_LKidney 5 DR_RKidney	B Mass (kg) 1.62475 0.0895185 0.115164 0.0996514	(50%) C Data points integral (Gy) 12.6454 3.12271 3.24264 4.00441	D Absorbed Dose (Gy) 15.493 3.556613 3.65565 4.52617	F: J0:DOSE Mont. B. J0:CTCT CT 4H E Difference (%) 18.3799 12.1878 11.2979 11.5276	.lo 4HR (50%)
bed dose rate algorithm Local Er Calculate Do gmentation nce Segmentation: Segmentation Propagate iment Tables and Plots Create ACTM Tables Create ACTM Plots le integration oration Mode Innear ttion Algorithm Trapezoid Integrate Activity	ergy Deposition (LED) see Rate Images on Create DOSE Tables Create DOSE Plots Integrate Absorbed Dose Rate	F: J0:DOSE M B: J0:CTCT CT T A 1 Segment 2 DR_Liver 3 DR_Spleen 4 DR_LKidney 5 DR_RKidney	B Mass (kg) 1.62475 0.0895185 0.115164 0.0996514	(50%) C Data points integral (Gy) 12.6454 3.12271 3.24264 4.00441	D Absorbed Dose (Gy) 15.493 3.55613 3.65565 4.52617	F: J0:DOSE Mont. J0:TCT CT 4F E Difference (%) 18.3799 12.1878 11.2979 11.5276	lo 4HR (50%)

Internal Dosimetry using Gate as gold standard:

- A clinical case of Lu-177 was tested with different algorithms taking GATE as gold standard for absorbed dose calculation.
- The algorithms were implemented in a workflow¹ as a Slicer3D module.

¹Gate can not be integrated in the workflow because requires too much time

CONTRACTOR OF CONTRACTOR CONTRACT

Developing a dosimetric database (SAFs, S-values) for Nuclear Medicine:

- collaborative data production (14 research teams)
- open and FAIR data
- data associated with uncertainties
- online access

2 (female/male models) × 140 (sources) × 2 (particles) × 91 (energies) = 50960 simulations

Production status:

- CRCT (local cluster + EGI + GateLab):
 - **GATE 8.1**: 2 models, all sources from 5 keV to 60 keV (75% total)
 - Geant4 10.5: 2 models, all sources, all energies (100% total)
- CRUK (local cluster) with **PENELOPE_2014**: 1 model, 2 sources, 7 energies
- IEO-CNAO (local cluster) with Fluka_2011: 1 model, 2 sources, 7 energies
- IRSN (local cluster) with MCNPXv2.6c: 1 model, 3 sources, 7 energies
- NPL (local cluster) with **EGSnrc/EGS++ 2016**: 1 model, 2 sources, 7 energies
- SCK.CEN (local cluster) with MCNPXv2.7: 1 model, 2 sources, 7 energies
- SGH and UOW (local cluster) with GATEv7.2: 2 models, 80 sources, all energies (30% total)

Gate Lab

GateLab (VIP) developments thanks to OpenDose:

- New pipeline to update GATE releases on GateLab:
 - DockerFile which build a new image with Geant4, ROOT and GATE on CentOS
 - Script to extract the GATE binary and dependencies from the Docker image
 - \circ $\hfill Add an env.sh to ease the setup of Geant4 and ROOT environment variables$
- Updated merger for the new DoseByRegions output
- New random seed behavior for split jobs when the seed is set manually:
 - The random seed is then incremented between jobs to insure no duplicates
- + now GateLab accepts command line aliases like GATE:
 - ALIAS is -a [Source_ID,95][particle,gamma][energy,0.00500][nb,10000][seed,2950001]

Work in collaboration with T. Baudier, A. Bonnet, S. Camarasu-Pop and G. Mathieu.

OpenDose: Maxime Chauvin (Postdoc)

• The website is online ! <u>http://www.opendose.org</u>

• It is developed in HTML5 + CSS, PHP and JavaScript

🚯 git 😽 GitLab

• The source code is versioned with Git in a private repository at GitLab

- The website is deployed in a Virtual Machine hosted at creatis.insa-lyon.fr :
 - Fedora 28, 4 virtual CPUs, 8 GB RAM, 250 GB disk size.

Dm to Dw conversion: Victoria Fonteny (MSc)

- Conventional algorithm such as AAA (Varian) express the absorbed dose in water (D_w)
- Deterministic algorithm such as AXB (Varian) and Monte Carlo
 Simulation express the absorbed dose in medium (Dm)

 \rightarrow Need for a conversion

Several existing conversions dose to medium to dose to water : $D_w = D_m s_{w,m}^{BG}$ (Siebers, 2000) $D_w = D_m s_{w,med}^{BG} k_{\Phi}$ (Andreo, 2014) $D_w = D_m \left(\frac{\overline{\mu_{en}}}{\rho}\right)_{w,m}$ (Reyneart, 2018)

Aim of the study:

- Comparison of Dm and Dw between
 GATE and AAA/AXB
- Assess different conversion methods

Comparison between GATE and AAA/AXB:

Dm to Dw conversion: Victoria Fonteny (MSc)

Questions regarding GATE physics list:

OpenGATE technical meeting - Lyon, France - 4th July 2019

SBRT - Interplay: Jeremy Leste (PhD)

Objectives:

- Develop a GATE model to simulate respiratory motion on phantom
- Validate model against measurement
- Develop a methodology to study interplay effect

GATE model validation:

SBRT - EPID dosimetry: A. Rita Barbeiro (Postdoc)

STEREPID (*EPID for QA and in-vivo dosimetry of STEReotactic fields*) project « Physique Cancer » 2016

Evaluation of spectral and spatial distribution variations in non-reference conditions

Non-transit MC EPID dosimetry for a SBRT-VMAT treatment (from TPS parameters)

N particles/CP= 10⁸ Total simulation time: ~23h (178 CPs [75 cores]) Voxel size: 0.8x0.8.x0.52 mm³ $\sigma_{MC} < 1\%$

vGATE virtual machine releases:

- built on top Ubuntu 18.04 LTS
- GATE, GateContrib, Geant4, ROOT, ITK, VTK, vV, ImageJ, Python3 Notebook...
- available as .ova file (7.4 GB)

Docker image releases:

- built on top CentOS 7 with Dockerfile
- GATE, Geant4, ROOT

GateLab (VIP) binary releases:

- built from the Docker image •
- GATE, Geant4, ROOT

● ● 🍵 🕋 maxime — @6110c38cb05d:/ — docker run -it opengatecollaboration/gate — 58×5 **19:44 E15MC:**~ > docker run -it opengatecollaboration/gate [root@6110c38cb05d /]# Gate --version Gate version is 8.2 [root@6110c38cb05d /]#

http://gatelab.creatis.insa-lyon.fr

La science pour la santé

detect image identify

kromek^{*} Training @ Kromek company 2019

Workshop @ MCMA 2019

Vietnam?

