Deep Learning in Monte-Carlo simulations GAGA: GAN for GATE

David Sarrut, Nils Krah, Jean-Michel Létang

University of Lyon

CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France

CREATIS Research Lab

- CREATIS : 200 persons, 70 perm, 6 teams
- Research group :
 - 3 permanents researchers
 - 4 PhD students
 - 4 post-doc
- Two main themes:
 - Image reconstruction, IGRT, registration
 - Simulations (Monte-Carlo)

CREATIS

www.creatis.insa-lyon.fr

Léon Bérard cancer center (CLB)

- Private-public structure
- One over 20 centers in France
- Dedicated to fight cancer
- Radiation therapy department
- Nuclear medicine department
- Strong link with clinical staff, access to data
- Lyrican project

www.centreleonberard.fr

Radiation Therapy Linac head simulation

Goal: determine beam characteristics (energy, position, direction distributions)

Few photons exiting VRT (brem splitting)

e- beam

Phase Space (PHSP)

- Store beam properties as Phase Space
 - A PHSP is a list of particles (around 1e8, 1e9)
 - Properties: E, x, y, z, dx, dy, dz, w
- Advantages:
 - Computed only once
 - Fast to use
 - Can be shared
- Drawback
 - Several GB
 - When a cluster is used, should be shared among workers
 - Limited number of particles
 - Extensive description, not a model
 - Latent variance [Sempau2001]

Example of dependence of direction ϕ and energy.

Virtual Source Models

- Several VSM have been proposed
 - [Fix2001] [Grevillot2011] [Chabert2016], ...
 - Histograms-based description (6D !): correlations bw variables
 - Analytical function model, adapted sampling procedures
 - Correlated-histograms with adaptive binning schemes, Kernel-Density Estimator (KDE)
 - •••
- May be efficient but
 - Simplification specific to one Linac type
 - Not a unique standardized method
 - Not easily generalisable to other Linac types (Cyberknife, Tomotherapy, FFF, etc)

GAN: Generative Adversarial Network

[Goodfellow, 2014]

Goal: « learn » a multidimensional probability distribution

Random generation of high quality images

custom features: male, smile glasses ...

7

GAN: Generative Adversarial Network

- Training dataset $\, oldsymbol{x} \in \mathbb{R}^d \,$
 - Dimension d=7 (E, X, Y, Z, dX, dY, dZ)
 - Samples of an unknown distribution p_{real}
- Generator $G(\boldsymbol{z}; \boldsymbol{\theta}_G)$

• Discriminator $D(\boldsymbol{x};\boldsymbol{\theta}_D)$

GAN: Generative Adversarial Network

- Training dataset $\, oldsymbol{x} \in \mathbb{R}^d \,$
 - Dimension d=7 (E, X, Y, Z, dX, dY, dZ)
 - Samples of an unknown distribution p_{real}

Loss function

- GAN notoriously difficult to train
- Alternative formulations: Wasserstein GAN [Arjovsky 2017]
- "Earth-mover" distance (EMD) : cost of the optimal transport
- Un-tracktable in practice, but approximated:

$$J_D(\boldsymbol{\theta}_D, \boldsymbol{\theta}_G) = \mathbb{E}_{\boldsymbol{z}} [D(G(\boldsymbol{z}))] - \mathbb{E}_{\boldsymbol{x}} [D(\boldsymbol{x})]$$
$$J_G(\boldsymbol{\theta}_D, \boldsymbol{\theta}_G) = -\mathbb{E}_{\boldsymbol{z}} [D(G(\boldsymbol{z}))]$$

Experiments

PHSP downloaded on IAEA web site

PHSP	Size	Nb of particles
Elekta PRECISE 6MV	2 files of 3.9 GB	1.3×10^8 photons each file
CyberKnife IRIS 60mm	2 files of 1.6 GB	5.8×10^7 photons each file

Results

Marginal distributions of the 6 parameters obtained from the reference PHSP and from the GAN, for Elekta 6MV linac.

•

14

Results

Distributions of relative differences between

- PHSP1 and PHSP2
- PHSP1 and GAN

Vertical lines indicate the mean differences

Difference relative to the prescribed dose

Conclusion

- Using GAN to represent a Phase-Space is feasible
- Final GAN model: few MB (vs PHSP = 4 GB)
- Sufficient for dose computation
- Training is difficult: hyperparameters, 511 keV peak, ...
- Soon available in GATE <u>www.opengatecollaboration.org</u>

- Perspectives :
 - Could it be learned from less particles ?
 - Detailed statistical analysis in progress
 - Other applications of GAN within MC simulations

PMB publication currently under revision

Thanks for your attention !

CREATIS

David Sarrut, Nils Krah, Jean-Michel Létang