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CREATIS Research Lab

• CREATIS : 200 persons, 70 perm, 6 teams
• Research group :
• 3 permanents researchers
• 4 PhD students
• 4 post-doc

• Two main themes:
• Image reconstruction, IGRT, registration
• Simulations (Monte-Carlo)

www.creatis.insa-lyon.fr
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Léon Bérard cancer center (CLB)

• Private-public structure
• One over 20 centers in France
• Dedicated to fight cancer

• Radiation therapy department
• Nuclear medicine department 

• Strong link with clinical staff, access to data
• Lyrican project

www.centreleonberard.fr
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Radia%on Therapy Linac head simula%on

Goal: determine beam characteristics 
(energy, position, direction distributions)

e- beam

Few photons exiting
VRT (brem splitting)
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Phase Space (PHSP)

• Store beam properties as Phase Space
• A PHSP is a list of particles (around 1e8, 1e9)
• Properties: E, x, y, z, dx, dy, dz, w

• Advantages:
• Computed only once
• Fast to use
• Can be shared

• Drawback
• Several GB
• When a cluster is used, should be shared among workers
• Limited number of particles
• Extensive description, not a model
• Latent variance [Sempau2001]
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Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4 911
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Figure 5. Analysis of the direction parameter φ using a PhS of 1.1 × 107 photons. Top: φ
distribution (a). Bottom: double dependence of φ with photon radial position (b) and energy (c).

PhS and the SBS PhS. A further improvement in the toolkit would be to fill the histograms
directly during the simulation, thus avoiding to store bulky PhSs.

Depth doses and dose profiles were computed with the MSM and compared to the reference
measurements, using both the reference and the SBS PhSs. These comparisons allowed for
evaluating the bias introduced by the SBS tool when using the MSM. Additional calculations
were performed using the EGEE grid for full simulations, from the electron source to the water
phantom, using the SBS tool. These simulations allowed for evaluating the bias introduced by
the MSM, when using the SBS tool. Eventually, some simulations were performed by reading
the reference PhS and were compared to MSM calculations. It is noteworthy that it is possible
to perform all kind of GATE simulations on the grid, for radiotherapy as well as for PET and
SPECT applications. See Camarasu-Pop et al (2010) for implementation details of GATE on
the EGEE grid.

2.8. SBS tool

The mandatory tuning stage of the two electron beam parameters (mean energy and spot
size) required many simulations. A different PhS file corresponding to each configuration
was used by the MSM in order to compare simulations with measurements in water. A
variance reduction technique SBS (Rogers et al 2002), is now implemented in GATE (Jan
et al 2010) in order to increase the production of photons by the bremsstrahlung process.
The improvement of the simulation efficiency for radiotherapy applications is a complex task,
which was extensively studied for the EGSnrc/BEAMnrc code: directional bremsstrahlung
splitting (DBS) (Kawrakow et al 2004, Mainegra-Hing and Kawrakow, 2006), bremsstrahlung

Example of dependence of direction φ and energy.
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Virtual Source Models

• Several VSM have been proposed
• [Fix2001] [Grevillot2011] [Chabert2016], …

• Histograms-based description (6D !): correlations bw variables

• Analytical function model, adapted sampling procedures 

• Correlated-histograms with adaptive binning schemes, Kernel-Density Estimator (KDE)

…

• May be efficient but 
• Simplification specific to one Linac type

• Not a unique standardized method

• Not easily generalisable to other Linac types (Cyberknife, Tomotherapy, FFF, etc)
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GAN: Generative Adversarial Network

[Goodfellow, 2014]
Goal: « learn » a mul9dimensional probability distribu9on

Ini9al applica9on : 
ar9ficial images generator
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GAN: Generative Adversarial Network

• Training dataset
• Dimension d=7 
• Samples of an unknown distribu:on   

• Generator

• Discriminator
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GAN: Generative Adversarial Network

• Training dataset
• Dimension d=7 
• Samples of an unknown distribu:on   preal
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Loss func)on

• GAN notoriously difficult to train

• Alternative formulations: Wasserstein GAN [Arjovsky 2017] 

• “Earth-mover” distance (EMD) : cost of the optimal transport

• Un-tracktable in practice, but approximated:

GAN for MC simulations 3

The goal is to learn a generative function G that models a distribution p✓. ✓74

are the parameters of the distribution model approximating a target distribution preal75

only known by samples from a training dataset [6]. The neural network architecture is76

composed of two multilayer perceptrons, D and G, competing one against the other,77

hence the term adversarial. The generator G(z;✓G) is trained to produce samples78

distributed similarly as the data distribution of x. It takes z as input, sampled from a79

simple normal prior distribution, N (0, 1), and produces a sample x as if it were drawn80

from preal. The parameters ✓G are the weights of the network G. The discriminator81

D(x;✓D) is trained to distinguish between samples from the data distribution and those82

generated by G. It takes x as input and outputs a single scalar that represents the83

probability of x coming from the real data rather than from the generator. D is trained84

to maximize the probability of correctly identifying samples from the training data as85

real and those generated by G as fake. The parameters ✓D are the weights of the network86

D.87

The GAN training process is a zero-sum non-cooperative game which converges88

when the discriminator and the generator reach Nash equilibrium [13]. A Nash89

equilibrium is reached when one player (neural network) will not change its action90

(weights) regardless of what the opponent (the other network) may do. In the91

conventional GAN formulation [6], the considered cost function was the Binary Cross92

Entropy (BCE) both forG andD. BCE(p, q) between two distributions p and q is related93

to the Kullback-Leibler divergence which measures the performance of a classification94

model whose output is a probability value between 0 and 1. It has been shown that the95

loss function of GAN quantifies the similarity between the data distribution generated96

by G and the real sample distribution, by the Jensen-Shannon divergence (JSD) when97

the discriminator is optimal [6]. JSD is a symmetrized and smoothed version of the98

Kullback-Leibler divergence.99

However, in practice GAN was found to be di�cult to train and subject to mode100

collapse [8]. Here, we instead used the Wasserstein GAN variation proposed by Arjovsky101

et al. [8], that use Earth Mover’s distance as an alternative GAN loss function. The102

Wasserstein (or Earth-Mover) distance between two distributions p and q is the cost of103

the optimal transport to deform p into q. It has been shown that it helps to stabilize104

the learning process, being less subject to vanishing gradient than conventional GAN.105

In practice, there are few changes from the original GAN. First, the losses become as in106

equations 1 and 2.107

JD (✓D,✓G) = Ez [D(G(z))]� Ex [D(x)] (1)

JG (✓D,✓G) = � Ez[D(G(z))] (2)

Then, after every gradient update, the weights ✓D are clamped to a small fixed108

range (e.g. [�0.01, 0.01]) in order to enforce weights to be in a compact space. Finally,109

the authors [8] also recommend to use the RMSProp optimizer [14] instead of the110

conventional Adam optimizer [15] which uses momentum processes that may cause111



11

Experiments

PHSP downloaded on IAEA web siteGAN for MC simulations 5

PHSP Size Nb of particles

Elekta PRECISE 6MV 2 files of 3.9 GB 1.3⇥ 108 photons each file

CyberKnife IRIS 60mm 2 files of 1.6 GB 5.8⇥ 107 photons each file

Table 1. Characteristics of the two used datasets

Monte-Carlo relative statistical uncertainty �(k) = S(k)
D(k) of the deposited energy in a149

voxel k was computed with the history by history method [20], with k a voxel index,150

S(k) the statistical uncertainty in voxel k and D(k) the total deposited energy in voxel151

k152

In order to compare particles from PHSP and GAN-generated particles, the153

marginal distributions of all 6 parameters were plotted. Then, simulations to compute154

the deposited energy in a water using PHSP and GAN-generated particles were155

compared by analyzing the voxel by voxel di↵erences of the deposited energy. The156

distribution of voxel di↵erences naturally contains uncertainty and we evaluated the157

similarity of this uncertainty between PHPS and GAN generated data. We thus158

compared the distribution of di↵erences between two PHSP (�PHPS), and between159

a GAN and a PHSP simulations (�GAN). The di↵erences were normalised by the160

maximum value in the image, as a proxy for the prescribed dose, denoted D̂PHPS2 ,161

see equation 4.162

�PHPS(k) =
DPHPS2(k)�DPHPS1(k)

D̂PHPS2

(3)

�GAN(k) =
DPHPS2(k)�DGAN(k)

D̂PHPS2

(4)

Moreover, in every voxel, we compute the ratio between voxel di↵erence and163

uncertainty. If the error were normally distributed, the distributions of those ratios164

should have a zero mean and unit standard deviation. Finally, we plot depth dose165

curves (along z) and transversal dose profile at 20mm depth.166

Results167

Figure 1 depicts the evolution of the loss function JD (✓D,✓G) (equation 1) during the168

training process, as a function of iterations. Figures 2 and 3 display the marginal169

distributions of the 6 parameters (E, x, y, dx, dy, dz; z was fixed) extracted from the170

initial PHSP compared to the ones obtained from the GAN. Note that the dataset171

used to train the GAN was di↵erent from the one used for validation. The left panel in172

figure 4 shows the distribution of the relative di↵erences �PHSP and �GAN for both tests173

(Elekta and CyberKnife). The mean di↵erences are indicated with vertical lines. The174

right hand panels show the distribution of the ratio between di↵erences and uncertainty,175

that should ideally depict a zero mean and standard deviation of one. Finally, figures 5176

show transversal and depth profiles of deposited energy for both tests. The learning177
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Results

Marginal distributions of 
the 6 parameters
obtained from the 
reference PHSP and from
the GAN, for Elekta 6MV 
linac. 

E X

Y dX

dZdY
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Results

• Dose distribution in water from PHSP
108 primary photons

• Compare dose between: 
1. PHSP1 vs PHSP2
2. PHSP1 vs GAN

• Voxel by voxel dose comparison

LINAC head

PHSP plane

Waterbox

Difference/uncertainty

Beam
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Results

Distributions of relative 
differences between 
• PHSP1 and PHSP2 
• PHSP1 and GAN

Vertical lines indicate 
the mean differences

Difference relative to 
the prescribed dose
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Conclusion

• Using GAN to represent a Phase-Space is feasible
• Final GAN model: few MB (vs PHSP = 4 GB)
• Sufficient for dose computation
• Training is difficult: hyperparameters, 511 keV peak, …
• Soon available in GATE www.opengatecollaboration.org

• Perspectives :
• Could it be learned from less particles ? 
• Detailed statistical analysis in progress
• Other applications of GAN within MC simulations

PMB publication currently under revision

http://www.opengatecollaboration.org/
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