

Neural Networks for Position of Interaction Reconstruction in Monolithic Scintillator for γ -Cameras.

<u>M.-A. Verdier</u>, C. Trigila, F. Bouvet, Y. Charon, M.-A. Duval, C. Esnault, L. Ménard, L. Pinot

Gate Technical Meeting verdier@imnc.in2p3.fr

Lyon - 04/07/2019

Context

• Compact and mobile high performances γ -cameras show large interest for various new clinical applications

Camera MAGICS/TReCam¹

 Intraoperative radio-guided surgery for breast cancer (SNOLL)

¹A. Bricou PhD thesis 2018
²C. Trigila PhD thesis Sept 2019

Camera MoTI²

 Individualized thyroid radio-iodine therapy dosimetry

γ -Camera @ IMNC

- High performances compact and mobile γ -camera
- Module de photodétection 256 pixels³
 - 4 MPPC 8×8 pixels. (3 mm SiPMs)
 - 8 ASICs EASIROC 32 channels with tunable 8 bits DACs
 - $\bullet~$ Motherboard with FPGA +~ power supply
 - $\bullet\,$ Power consumption : 2.7 W
- $5 \times 5 \text{ cm}^2$ continuous LaBr₃:Ce (5 mm to 2 cm thick)
- Scintillators with absorbing or reflective edge coating
- Submillimetric intrinsic spatial resolution and 7% energy resolution @356 keV
- Source on motorized platform in climatic chamber

Monolithic Scintillator γ -Camera

Light Distribution

- Isotropic emission of optical photons at interaction position.
- 2D profile of surface light density.

 \Rightarrow Reconstruction of position of interaction (x_0, y_0) of γ -rays ?

<

Reconstruction Methods

- γ Events with parameters $\theta = (x_0, y_0, z_0, N_0)$
- Each pixel p_i has the probability to measure N_k photoelectrons (Poisson):

$$\begin{cases} \mathbb{P}_i(N_k|\theta) = \frac{\mu_i^{N_k}(\theta)e^{-\mu_i(\theta)}}{N_k!}\\ \mu_i(\theta) \propto N_0 \times \eta_i(x_0, y_0, z_0) \end{cases}$$

• $\eta_i(x_0, y_0, z_0)$: Pixels light function response: unknown

¹³³Ba flood field Reconst. (fit)

Туре	Method	Speed	Accuracy	Note
Centroid	Barycenter	\checkmark	××	Strong deformation
	Squarred barycenter	\checkmark	×	Strong deformation
Fit	Analytical Model	\checkmark	\checkmark	Hard to model
	Interpolation	ХX	\checkmark	Calibration required
Machine learning	KNN	××	✓ X	Calibration required
	Neural Networks	\checkmark	??	Training Required

6/1!

- Layers of artificial neurons
- Basic Feed Forward network:
 - All neurons are connected to every neurons of the previous and the next layer
 - Each neuron as a weight, a threshold and an activation function (same function for the whole layer)

 $\Rightarrow \mathsf{Output}: o_j = \varphi(\sum_i x_i w_{ij} + \theta_j) \text{ (or } o_j = \varphi(\mathbf{x}_j \cdot \mathbf{w}_j) + \theta_j)$

Activation Function

• Sigmoid : $f(x) = \frac{1}{1+e^{-x}}$

• Tanh :
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Linear (identité) : f(x) = x
- Relu (Rectified Linear Unit) : f(x) = max(0, x)
- Softplus : $f(x) = log(1 + e^x)$

Weights **w** Computation

- \bullet Training dataset ${\bf X}$ with known results ${\bf y}$
- Loss function
 - MSE (Mean Squared Error) : $L = \frac{1}{N} \sum_{i} (\hat{y}_i y_i)^2$
 - etc
- Retropropagation
 ⇒ Blame weights regarding their influence
 - \Rightarrow Optimization function
 - Stochastic Gradient Descent
 - Adam⁴ (and variations: Adamax, *etc*)

\Rightarrow Iterative : Training for several *epoch*

⁴https://arxiv.org/abs/1412.6980v8

Gradient descent

$$\Delta w_{ij} = -\eta \frac{\partial L}{\partial w_{ij}}$$

8/1

- Structure
 - Number of hidden layers
 - Nomber of neuron per layer
- What function of activation
 - On each layer
 - Output: linear (regression)
- What loss function: MSE
- What optimization method
- What regulizers
- Number of epochs
- \Rightarrow Lots of parameters to tune !
- \Rightarrow What training data ?

Which data for training and optimization?

10/15

Exp. Scan Collimated ⁵⁷Co

Average 256 pixels frame at the center of the FoV

- Scan with collimated 57 Co ($\phi{=}500$ m) with 3 mm step.
- True γ position of interaction: Unknown !
 - Evaluated with another method ?
 - Use mechanical position of the collimator ?

- Gate Optical Simulation
 - Light distribution not perfectly reproduced
 - Can strongly affect exp data reconstruction

⇒ Gate optics simulation scan to optimize (find best parameters) ⇒ Experimental scan for training.

- Gate optical MC simulation for generating both training and validation data sets
 - 1 *Scans* of (17×17) positions with 1000 γ events each. \Rightarrow Training
 - 1 Flood field of 1 million events. \Rightarrow Validation

\Rightarrow Network parameters optimization.

NN Parameter Optimization

Good neural network parameters

Bad network parameters

M.-A. Verdier

NN for Scintillators

12/15

Experimental Data (Preliminary)

Exp. Scan Collimated ⁵⁷Co

 $\Rightarrow \text{Stronger distortions compared} \\ \text{to fitting method but faster than} \\ \text{at least one order of magnitude.} \\ \Rightarrow \text{Still requires some parameters} \\ \text{tuning.} \end{aligned}$

Fully Connected Network

terative fitting method

14/1!

• NN Optimization based on Gate MC simulation

Future

- Better quantification of NN (based on the image)
- Parameter fine tuning
- Better training values (based on other methods)
- Add Depth of interaction computation

NN for Scintillators

15/15