Jets as a probe of the Quark-Gluon Plasma

Inna Kucher

Laboratoire Leprince-Ringuet (Palaiseau, France)

> LLR student seminar 27 May 2019

... "Are there new states of matter at ultrahigh temperatures and densities?"

"The 11 Greatest Unanswered Questions of Physics", Discover Magazine, 2002

- Quark gluon plasma (QGP) introduction
- Heavy ion collisions : tool for the QGP creation
- Jet introduction
- Jets as a QGP probe
- Selected experimental results

Quantum Chromo-Dynamics

Quantum Chromo-Dynamics (**QCD**) describes the interaction between quarks and gluons

© R. Arleo

Different faces of QCD

[©] R. Arleo

Normal matter :

quarks and gluons are confined

One can create a high density/temperature system composed by a large number of quarks and gluons →

"deconfined" phase of matter – Quark-Gluon Plasma (**QGP**)

Phase diagram of QCD matter

First predicted by Cabibbo and Parisi in 1975.

Critical End Point computed on lattice QCD

Explore this diagram : create a system of quarks and gluons at high temperatures → **heavy ion collisions**

Heavy ion colliders

- Since 2000
- $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Au-Au, d-Au, pp ...

- Since 2010
- $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- PbPb, pPb, pp ...

High energy physics detectors

ATLAS and CMS :

- Fast and able to handle very high luminosity
- Precision silicon tracking
- High B field
- Hermetic calorimeters for $\,{\,\rm e}/\gamma\,$, jets and missing energy

Heavy ion detectors

ALICE, STAR, PHENIX :

- Tracking with gaseous detectors for high occupancy
- Low energy reach is essential for "bulk" observables
- Emphasis on particle ID (p, K, $\pi...$)

Heavy ion collisions : time evolution

Length : fm ("Fermi"), $1 \text{ fm} = 10^{-15} \text{ m}$ Time: fm/c, $1 \text{ fm/c} = 0.33 \cdot 10^{-23} \text{ s}$

Prior to collision:

1. Relativistic nuclei are Lorentz contracted

After the collision :

Particles start to scatter (τ ~ 1/p)
 After t ~ 1 fm/c, equilibrium is established, giving a thermalized QGP
 QGP expands and cools until about 10 fm/c (3 × 10⁻²³ sec)
 Hadronization, particles stop interacting and move towards detectors

Heavy ion collisions : geometry

Collisions vary in "centrality"

Centrality

Glauber model is used to relate $\rm\,N_{part}\,$ and charged particle multiplicity ($\rm N_{ch}$)

A real heavy ion collision

Probes of the QGP

- Medium density partons (jets)
- $\bullet\,$ Temperature Quarkonium states (J/ ψ , Y), dileptons and photons
- Thermalization Strangeness enhancement
- Collectivity Particle correlations
- ...

Partons, hadrons and jets

Pertubative QCD knows partons (quarks and gluons)

Define an experimental quantity which resembles a parton

Jets - collimated bunches of stable **hadrons**, originating from **partons** after fragmentation and hadronization

 \rightarrow jet is designed to be a proxy for a parton

Hard scattering in elementary collisions

Factorization of the cross-section :

Hard scattering of point-like partons described by pQCD

Soft processes described by universal, phenomenological functions :

Parton distribution function (PDF) can be extracted from deep inelastic scattering

Fragmentation functions - from e^+e^- or hadron collisions

Jet quenching

 $d\sigma = f(x_1, Q^2) \otimes f(x_2, Q^2) \otimes d\hat{\sigma} \otimes P(\Delta E) \otimes D(z', Q^2)$

Parton energy loss

Collisional energy loss:

Elastic scatterings with medium constituents Dominates at low energy

Radiative energy loss:

Inelastic scatterings with medium constituents Dominates at high energy

Energy loss depends on :

- \rightarrow path length
- \rightarrow parton flavor
- \rightarrow medium density want to extract

Analogy : energy loss in normal matter

The goal : establish similar picture for QCD matter

Selected jet results

- Jet quenching observation at RHIC and LHC
 - proof of the concept
- Jet substructure
 - how jet constituents are modified
 - evolution of the parton shower
 - color coherence effect

- Photon + jets
 - photon gives well-defined initial parton kinematics

Hadron suppression at RHIC

 $\pi^0 \to 2\gamma~$ measured in PHENIX in pp and AuAu collisions

Nuclear modification factor :

 $R_{AA} = \frac{\text{per-event yield}_{AA}}{\text{number of binary collisions} \times \text{per-event yield}_{pp}}$

No medium effect : R _{AA}= 1

Au-Au yield suppressed by factor of 5

Cross-section p[⊤] dependence:

$$\frac{d\sigma}{dp_T} \propto \frac{1}{p_T^n} \qquad \begin{array}{c} n\approx7 \quad \text{at RHIC} \\ n\approx5 \quad \text{at LHC} \end{array}$$

Fractional constant energy loss :

$$p'_{\rm T} = C \times p_{\rm T} \longrightarrow R_{\rm AA} = C^{n-1}$$

R _{AA} = 0.2 at RHIC; C = 0.8 (20% energy loss)

Each parton loses 20% of its energy

Dihadron azimuthal correlations at RHIC

Partner hadron $2 < p_T < p_T(trig)$

STAR, PRL 91 (2003) 072304

Trigger hadron

Partner hadron

Trigger hadron preferentially produced near surface, while recoil jet traverses the QGP

Jets at RHIC and LHC

Full jet reconstruction was done for the first time at the LHC

STAR

CMS

Jet reconstruction at the LHC

Jets consist of hadrons and photons \rightarrow energy can be measured by the calorimeters only

Particle Flow in CMS (JINST 12 (2017) P10003) ATLAS (Eur. Phys. J. C 77 (2017) 466)

Jet energy resolution improves by factor 2 at lower p_T thanks to the tracker resolution

Jet clustering

Jet clustering : reverse-engineering of the fragmentation and hadronization

Sequential clustering : combines the closest particles into jets

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$$

Distance between pairs of particles

 $d_{iB} = p_{ti}^{2p} \begin{cases} p = 1: kt \\ p = 0: C/A \\ p = -1: anti-kt \end{cases}$ Distance to the beam

JHEP 0804:063,2008

Underlying event in pp and PbPb collisions

Underlying Event (UE) - particles not associated with the hardest parton-parton process quantified as transverse momentum density (p)

PileUp (PU) – concurrent interactions coming from the same bunch crossing

UE in pp with <PU> ~ 200 looks like central PbPb

Jets in PbPb collisions

Before UE subtraction

After UE subtraction

What amount of UE to subtract? How?

UE subtraction in CMS : constituent subtraction

Particle-by-particle: correct the 4-momentum of a jet and substructure

Repeat until no ghosts/particles left

Remaining particles get clustered into a jet

Jet suppression in ATLAS

Inclusive jet cross-sections are measured in pp and PbPb up to 1 TeV

At large pT : flat suppression in central collisions

Dijet p_T balance

If **no energy loss**, typically two jets have equal pT wrt the beam axis → ~ **back-to-back**

In PbPb more typical picture is highly unbalanced dijets

How to quantify the effect?

Dijet asymmetry in CMS

Fraction of all events with "balanced" jets

<u>CMS, PRC84 (2011) 024906</u>

In the most central PbPb ~ 2 times less "balanced" dijets

High degree of jet quenching

Jet substructure

Simplest picture of the energy loss: one hadron traversing QGP

More realistic : parton shower in the QGP

- \rightarrow how it is modified?
- \rightarrow what is the mechanism of the energy loss?

In the experiment many effects are **convoluted** :

- \rightarrow Momentum and color exchange of shower constituents with medium
- \rightarrow Medium response
- \rightarrow Role of the color coherence effect

 $\rightarrow \dots$

Look inside the jet!

Jet splitting : motivation

Parton interactions with the QGP can temporarily increase the gluon radiation probability :

 \rightarrow jet structure gets modified?

Different energy loss scenarios depending on color coherence of the jet in a medium :

 \rightarrow is jet one coherent emitter or two?

subjets modified differently

subjets equally modified

Jet splitting in CMS

First splitting in parton shower \rightarrow study only hard jet components

Subjet momentum sharing :

$$z_g = \frac{p_{T,2}}{p_{T,1} + p_{T,2}}$$

Angular distance between the subjets : $\Delta R_{1,2} > 0.1$

Momentum sharing is steeper in PbPb → splitting process is modified

Jet **cannot** be one coherent emitter!

Jet splitting in ALICE

First splitting in parton shower \rightarrow study only hard jet components

Jet fragmentation function in ATLAS

Distribution of charged-particle p_T inside the jet (fragmentation function) :

ATLAS, Phys. Rev. C 98 (2018) 024908

Jet fragmentation function in ATLAS

Distribution of charged-particle p_T inside the jet (fragmentation function) :

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

How much is the jet structure modified ?

$$R_{D(p_T)} = \frac{D(p_T)_{PbPb}}{D(p_T)_{pp}}$$

PbPb compared to pp :

- → more soft particles due to interaction with the medium
- \rightarrow suppression at mid p_T
- → enhancement at high p_T: consistent with quenching dependence on quark/gluon initiated jets

ATLAS, Phys. Rev. C 98 (2018) 024908

Photon + jet system

In pp collisions :

- → Compton scattering dominates : gluon in initial state and quark in the final state
- → jets are calibrated using photons : the photon energy scale is known to ~1% accuracy: absolute jet energy scale

In heavy ion collisions :

 \rightarrow photons do not interact with the QGP

 \rightarrow study the energy loss with well defined initial kinematics !

Photon+jet pT balance in ATLAS

What is the amount of energy lost by the jet?

The jet energy decrease with centrality

- in peripheral events : a peak-like structure is present in the same position as in pp
- in the most central events : strongly modified, no peak, jet energy decrease

Photon+jet fragmentation function in ATLAS

How is substructure modified by medium?

Fragmentation function :

|--|

0-30% Pb+Pb / pp

Modifications compared to pp:

- \rightarrow more soft particles due to interaction with the medium
- \rightarrow suppression at mid p_T
- \rightarrow no modification at high p_T

Photon+jet fragmentation function in ATLAS

How is substructure modified by medium?

Fragmentation function :

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

40

Summary

- Jets give insight of the energy loss in QGP
- Jet production is suppressed by factor 2 up to 1 TeV, but the hard structures in jets are mostly unmodified
- Enhancement of soft activity in jets !

Backup slides

Glauber model (1)

The collision of two nuclei is seen as individual interactions of the constituent nucleons

The **position** of each nucleon in a nucleus is determined according to the Woods-Saxon :

 $T_{AB}(b)$ - effective **overlap area** for which a specific nucleon in A can interact with a given nucleon in B.

Glauber model (2)

The total number of inelastic nucleon-nucleon collisions:

$$N_{
m coll}(b) = T_{
m AB}(b) \cdot \sigma_{
m inel}^{
m nn}$$
 Inelastic nucleon-nucleon cross section (defined from data)

Number of participants from A :

$$N_{\text{part}}^{\text{A}} = \int T_{\text{A}}(\vec{s}) \cdot \left(1 - \left[1 - \left(T_{\text{B}}(\vec{s} - \vec{b}) \cdot \sigma_{\text{inel}}^{\text{nn}} / B\right)\right]^{B}\right) d^{2}s$$

Probability for a nucleon in nucleus A to scatter with one from nucleus B

Total number of participants :

$$N_{\text{part}}(b) = N_{\text{part}}^{\text{A}}(b) + N_{\text{part}}^{\text{B}}(b)$$

/

Monte-Carlo Glauber model

Two colliding nuclei are modeled by distributing the nucleons of each nucleus in 3D coordinates according to nuclear density distribution.

A random impact parameter b: $\frac{d\sigma}{db} = 2\pi b$

Collision : a sequence of independent binary collisions

- \rightarrow the nucleons travel on straight-line trajectories
- → inelastic nucleon-nucleon cross-section is assumed to be independent of the number of collisions a nucleon underwent before.

Nucleons interact if their distance $d \leq \sqrt{\sigma_{inel}^{NN}/\pi}$

Ann.Rev.Nucl.Part.Sci.57:205-243,2007

B-jet production channels at LHC

LHC, pp collisions at 14 TeV

FCR is not dominant process

First Heavy Ion measurements convolute large contributions from NLO b-quark production processes

Energy loss is expected to depend on flavor → measure heavy flavor jets suppression

Quenching of b-jets

Jet spectra corrected for detector resolution effects for several centrality selections and pp

CMS, PRL 113 (2014) 132301

Suppression consistent with the one observed from inclusive jets

bb correlations

To suppress the contribution of gluon splitting and probe LO b-jet production : look at pairs of b jets that are back-to-back in azimuth.

No clear difference between pT balance of inclusive and b-dijets

Data from Run 3 will allow to make a conclusive statement

B-jet identification

<u>B-hadrons</u>

- Fragment hard, zb ~ 0.7 0.8
- Large decay multiplicity, (n_ch) ~ 5
- Long-lived hadrons cτ ~ 500 μm → mm – cm displacement in lab frame
- Tend to decay semi-leptonically (20% for µ and e)

Identification methods

Lifetime methods: exploit displaced vertices and/or tracks, both b-hadron and subsequent c-hadron decays

Soft-lepton tagging: μ or e inside the jet

Jet clustering algorithms : requirements

Collinear and IR safety :

- \rightarrow Collinear splittings should not bias jet finding
- \rightarrow Soft radiation should not effect jet configuration

Minimal sensitivity to hadronization, underlying event (UE), Pile-Up(PU)

Applicable at detector-level :

- \rightarrow good computational performance
- \rightarrow not to complex to correct

Hadrons at the LHC : much higher pT

Central RAA evolution with the center-of-mass energy increase

CMS, JHEP 04 (2017) 039

<u>SPS (17.3 GeV) and RHIC (200 GeV):</u>

- Pions (neutral and charged)
- Charged hadrons

LHC (2.76 and 5.02 TeV):

- Charged particles
- different models at 5.02 TeV approximately reproduce data

Low pT (up to 2 GeV) : rising trend

~7 GeV : local minima

Higher pT: slow increase of RAA → small suppression ~100 GeV

How to reconcile charged hadron and jet suppression? → dependence of quenching on <u>fragmentation pattern of jet</u>

UE subtraction in CMS : iterative pedestal

Jet performance in pp collisions

Very good resolution in ATLAS and CMS in pp collisions

Jet performance in PbPb collisions

JINST 12 (2017) P10003

CMS-DP-2018-024

Very good resolution in PbPb collisions for jets with R = 0.4

Dijet asymmetry in CMS

Complementary information about the overall momentum balance in the dijet events: the projection of missing pT of reconstructed charged tracks onto the leading jet axis

$$p_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{Leading Jet}}\right)$$

CMS, PRC84 (2011) 024906

Subleading jet energy is moved from high pT to lower pT and from small to large angles

Jet mass

ALICE, Phys. Lett. B776(2018) 249-264

0.1

M_g / p_{T,jet}

0.2

No modification to the mass of the core of the jet in PbPb

Photon+jets in CMS

Fragmentation functions of jets associated with isolated photons : initial parton energy constrained by photon pT

 $\zeta_T^{\gamma} = \ln rac{-|oldsymbol{p}_{ ext{T}}^{\gamma}|^2}{oldsymbol{p}_{ ext{T}}^{ ext{trk}} \cdot oldsymbol{p}_{ ext{T}}^{\gamma}}$

Quark enriched jet sample: flavor dependence of jet quenching

Projection of the tracks pT on photon pT axis :

CMS, Phys. Lett. B 785 (2018) 14