
Anisotropic Gaussian Processes for PSF modeling
&

Implementation within Piff

Pierre-François Léget - LPNHE/IN2P3



 2

PSFs In the Full FoV (Piff) package 

• Piff is a new python software for PSF estimation developed initially to replace PSFex 
in DES and now also developed for LSST

• Modular package where it is easy to implement new PSF modeling and interpolation 
scheme over the FoV 

• Package with unit testing and code review 

• Will be used for the Weak-Lensing analysis of DES Y3 

• Contributors: 

Mike Jarvis, Chris Davis, Josh Meyers, Pierre-François Léget, Erin Sheldon, Gary Bernstein, 
Aaron Roodman, Pat Burchat, Daniel Gruen, Ares Hernandez, Andres Navarro, Flavia 
Sobreira, Reese Wilkinson, Joe Zuntz, Sarah Burnett 
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Model that as a 
gaussian processes
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• Gaussian processes are a probabilistic way to interpolate data 

• Interpolation driven by the correlation function (aka kernel) 
described by “hyperparameters”; e.g.,  

• amplitude of the fluctuations  

• correlation lengths  

• … 

• No problem taking into account measurement uncertainties  

• Natural output is the mean and covariance at desired locations 

• Quick introduction to Gaussian process: How it works
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1) Choose a correlation function (kernel) 

2) Fit hyperparameters  

3) Compute interpolation  

• Involves inverting large matrices: N*N matrix, where N = number of 
stars for PSF (N~104 for LSST full field of view) 

• Many matrix inversions for optimization of hyperparameters. 

• Only one matrix inversion for interpolation!

• Quick introduction to Gaussian process: How it works
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• Quick introduction to Gaussian Process: example in 1D
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• Data generated with 
multivariate Gaussian and a 
squared exponential kernel 

• σ = 0.5, l = 2.0 

• Vary hyperparameters used in 
the gp interpolation  

• Animation shows impact of 
assumed hyperparameters on 
the interpolation

https://youtu.be/PXA3GhE-PwY

https://youtu.be/PXA3GhE-PwY
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• Classical method is to do a maximum likelihood fit (ML) 

• But you must then invert at each step of the maximization an N*N 
matrix (N~104 for LSST field of view) 

• Possibility of local maxima 

• Difficult to determine if hyperparameters are optimal without 
inverting many N*N matrices. 

• Difficult to determine whether kernel was best choice for 
correlations in data 

Hyperparameter fitting: the problem 



Hyperparameter fitting: Solution :)
• Basic idea: 

• Instead of using maximum likelihood to find hyperparameters, use two-point 
correlation function  

• Indeed, Kernel ~ two-point correlation function 

• How it works: 

• Measure two-point correlation function on the data (using treecorr) 

• Fit the (1D) two-point correlation function with different kernels to find the best 
kernel and optimal hyperparameters 

• Use these hyperparameters to interpolate with gp
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Gaussian random field  
generated with squared exponential kernel 
σ =0.03, l=0.5 (2000 points)

Fit 2-point correlation function 
with squared exponential kernel 
σ =0.0299, l=0.48

Hyperparameter fitting: Solution :)
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300 realizations of  
Gaussian random field  
generated with squared exponential kernel 
σ =0.03, l=0.5

Hyperparameter fit using 2-point 
correlation function 
with squared exponential kernel for 
300 realizations 

Hyperparameter fitting: Solution :)
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• The current scheme implemented within Piff
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Atmospheric PSF
parameter

Compute 2D
2-point correlation function 

with treecorr

Compute covariance matrix 
using bootstrap resampling 

Do the fit using a 𝛘2

(I am using the full covariance 
matrix in the fit)

Do GP interpolation 
with found 

hyperparameters

• The current scheme implemented within Piff



• Exemple on real data (exp id: 510463)
• Optical model removed and work only on the atmospheric parameters 
• size, g1, g2

• 80% used for training (hyperparameters fitting and interpolation)
• 20% kept for validation to compute Rowe Stat



• Von-Karman 
correlation 
function



• Gaussian 
correlation 
function







• What is next:
• Start to run on ~6000 images of DES Y3 in order to look the overall improvement. 
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The Optical and Atmospheric PSF model 

PSF profile Atmospheric part of the PSF~ ⊗Optical part of the PSF



 28

I(u,v) ∼ F P ρ,θ( )e2πiW ρ ,θ( )/λ{ }
Pupil function

Optical part of the PSF
as a Fraunhofer Diffraction

Atmospheric part of the PSF

Wavefront

PSF profile ~ ⊗

The Optical and Atmospheric PSF model 
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I(u,v) ∼ F P ρ,θ( )e2πiW ρ ,θ( )/λ{ }
Pupil function

Optical part of the PSF
as a Fraunhofer Diffraction

Atmospheric part of the PSF

Wavefront

Wavefront decomposed as a double Zernike polynomial
that depends on the focal plane coordinate

W ρ,θ( ) = ai,reference(u,v)+ ai,corr (u,v)⎡⎣ ⎤⎦Zi
i
∑ ρ,θ( )

ai,corr (u,v) = bi, j (u,v)Z j
j
∑ ρ,θ( )

PSF profile ~ ⊗

The Optical and Atmospheric PSF model 
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