Anisotropic Gaussian Processes for PSF modeling & Implementation within Piff

Pierre-François Léget - LPNHE/IN2P3

PSFs In the Full FoV (Piff) package

- Piff is a new python software for PSF estimation developed initially to replace PSFex in DES and now also developed for LSST
- Modular package where it is easy to implement new PSF modeling and interpolation scheme over the FoV
- Package with unit testing and code review
- Will be used for the Weak-Lensing analysis of DESY3
- Contributors:

Mike Jarvis, Chris Davis, Josh Meyers, Pierre-François Léget, Erin Sheldon, Gary Bernstein, Aaron Roodman, Pat Burchat, Daniel Gruen, Ares Hernandez, Andres Navarro, Flavia Sobreira, Reese Wilkinson, Joe Zuntz, Sarah Burnett

PSF decomposition

For a given exposure

Dark Energy Camera

PSF decomposition

For a given exposure

Dark Energy Camera

Model that as a gaussian processes

Quick introduction to Gaussian process: How it works

- Gaussian processes are a probabilistic way to interpolate data
- Interpolation driven by the correlation function (aka kernel) described by "hyperparameters"; e.g.,
 - amplitude of the fluctuations
 - correlation lengths
 - •
- No problem taking into account measurement uncertainties
- Natural output is the mean and covariance at desired locations

Quick introduction to Gaussian process: How it works

1) Choose a correlation function (kernel)

2) Fit hyperparameters

3) Compute interpolation

- Involves inverting large matrices: N*N matrix, where N = number of stars for PSF (N~10⁴ for LSST full field of view)
 - Many matrix inversions for optimization of hyperparameters.
 - Only one matrix inversion for interpolation!

Quick introduction to Gaussian Process: example in 1D

 Data generated with multivariate Gaussian and a squared exponential kernel

 $\xi(x) = \sigma^2 \exp\left(-\frac{1}{2}\left(\frac{x}{l}\right)^2\right)$

- $\sigma = 0.5, I = 2.0$
- Vary hyperparameters used in the gp interpolation
- Animation shows impact of assumed hyperparameters on the interpolation

Hyperparameter fitting: the problem

• Classical method is to do a maximum likelihood fit (ML)

$$\mathcal{L} \propto rac{1}{|\boldsymbol{\xi}|^{rac{1}{2}}} \exp\left(-rac{1}{2} \mathbf{y}^{T} \boldsymbol{\xi}^{-1} \mathbf{y}
ight)$$

- But you must then invert at each step of the maximization an N*N matrix (N~10⁴ for LSST field of view)
- Possibility of local maxima
 - Difficult to determine if hyperparameters are optimal without inverting many N*N matrices.
- Difficult to determine whether kernel was best choice for correlations in data

- Basic idea:
 - Instead of using maximum likelihood to find hyperparameters, use two-point correlation function
 - Indeed, Kernel ~ two-point correlation function
 - How it works:
 - Measure two-point correlation function on the data (using treecorr)
 - Fit the (1D) two-point correlation function with different kernels to find the best kernel and optimal hyperparameters
 - Use these hyperparameters to interpolate with gp

300 realizations of Gaussian random field generated with squared exponential kernel σ =0.03, l=0.5

Hyperparameter fit using 2-point correlation function with squared exponential kernel for 300 realizations

300 realizations of Gaussian random field generated with squared exponential kernel $\sigma = 0.03$, l=0.5

Hyperparameter fit using 2-point correlation function with squared exponential kernel for 300 realizations

The current scheme implemented within Piff

Atmospheric PSF

٠

The current scheme implemented within Piff

٠

Atmospheric PSF

2-point correlation function with treecorr

The current scheme implemented within Piff

٠

Compute covariance matrix using bootstrap resampling

Compute 2D 2-point correlation function with treecorr

The current scheme implemented within Piff

•

The current scheme implemented within Piff

•

- Exemple on real data (exp id: 510463)
 - Optical model removed and work only on the atmospheric parameters
 - size, gl, g2
- 80% used for training (hyperparameters fitting and interpolation)
- 20% kept for validation to compute Rowe Stat

size anisotropy 2-PCF

 Von-Karman correlation function size anisotropy 2-PCF

Isotropic Von Karman

Anisotropic Von Karman

- What is next:
 - Start to run on ~6000 images of DESY3 in order to look the overall improvement.

PSF profile \sim Optical part of the PSF \otimes Atmospheric part of the PSF

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF \sim as a Fraunhofer Diffraction $I(u,v) \sim \left| F \left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right|$ Wavefront Pupil function

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF as a Fraunhofer Diffraction $I(u,v) \sim \left| F \left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right|$ Wavefront **Pupil function** Wavefront decomposed as a double Zernike polynomial that depends on the focal plane coordinate $W(\rho,\theta) = \sum_{i} \left[a_{i,reference}(u,v) + a_{i,corr}(u,v) \right] Z_{i}(\rho,\theta)$ $a_{i,corr}(u,v) = \sum_{i} b_{i,j}(u,v) Z_{j}(\rho,\theta)$

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF as a Fraunhofer Diffraction as a Kolmogorov profile $I(u,v) \sim \left| F\left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right| \otimes K(\alpha(u,v),g_1(u,v),g_2(u,v))$ Wavefront **Pupil function** Wavefront decomposed as a double Zernike polynomial that depends on the focal plane coordinate $W(\rho,\theta) = \sum_{i} \left[a_{i,reference}(u,v) + a_{i,corr}(u,v) \right] Z_{i}(\rho,\theta)$ $a_{i,corr}(u,v) = \sum_{i} b_{i,j}(u,v) Z_{j}(\rho,\theta)$

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF as a Fraunhofer Diffraction as a Kolmogorov profile $I(u,v) \sim \left| F \left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right| \otimes K(\alpha(u,v),g_1(u,v),g_2(u,v))$ Wavefront Second moment of **Pupil function** the Kolmogorov profile (size, ellipticity) Wavefront decomposed as a double Zernike polynomial that depends on the focal plane coordinate $W(\rho,\theta) = \sum_{i} \left[a_{i,reference}(u,v) + a_{i,corr}(u,v) \right] Z_{i}(\rho,\theta)$ $a_{i,corr}(u,v) = \sum_{i} b_{i,j}(u,v) Z_{j}(\rho,\theta)$

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF as a Kolmogorov profile as a Fraunhofer Diffraction $I(u,v) \sim \left| F\left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right| \otimes K(\alpha(u,v),g_1(u,v),g_2(u,v))$ Wavefront Second moment of **Pupil function** the Kolmogorov profile (size, ellipticity) Kolmogorov parameters modeled as Wavefront decomposed as a double Zernike polynomial a Gaussian Process drive by a Von-Karman that depends on the focal plane coordinate correlation function $W(\rho,\theta) = \sum_{i} \left[a_{i,reference}(u,v) + a_{i,corr}(u,v) \right] Z_{i}(\rho,\theta)$ $\alpha(u,v) \sim N(\alpha_0(u,v),\xi)$ $g_1(u,v) \sim N(g_{10}(u,v),\xi)$ $a_{i,corr}(u,v) = \sum_{i} b_{i,j}(u,v) Z_j(\rho,\theta)$ $g_{2}(u,v) \sim N(g_{20}(u,v),\xi)$

PSF profile Optical part of the PSF \otimes Atmospheric part of the PSF as a Kolmogorov profile as a Fraunhofer Diffraction $I(u,v) \sim \left| F\left\{ P(\rho,\theta) e^{2\pi i W(\rho,\theta)/\lambda} \right\} \right| \otimes K(\alpha(u,v),g_1(u,v),g_2(u,v))$ Wavefront Second moment of **Pupil function** the Kolmogorov profile (size, ellipticity) Kolmogorov parameters modeled as Wavefront decomposed as a double Zernike polynomial a Gaussian Process drive by a Von-Karman that depends on the focal plane coordinate correlation function $W(\rho,\theta) = \sum_{i} \left[a_{i,reference}(u,v) + a_{i,corr}(u,v) \right] Z_{i}(\rho,\theta)$ $\alpha(u,v) \sim N(\alpha_0(u,v),\xi)$ $g_1(u,v) \sim N(g_{10}(u,v),\xi)$ $a_{i,corr}(u,v) = \sum_{i} b_{i,j}(u,v) Z_j(\rho,\theta)$ $g_{2}(u,v) \sim N(g_{20}(u,v),\xi)$