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1 Why we are interested in EW transition? 

High-temperature and dense matter of elementary particles appears in several areas of physics. 
The most familiar example is the Universe at the early stages of its expansion. The Big Bang 
theory states that the Universe was hot and dense in the past, with a temperature ranging 
from a few eV up to the Planck scale � Mp1 � 1019 GeV. It is believed that the Universe 
during its evolution went through several phase transitions, associated with different (GUT, 
electroweak, QCD) mass scales. The high-temperature phase transitions, typical for grand 
unified theories (GUTs), may be i mportant for cosmological inflation and primordial density 
fluctuations. Topological defects (such as monopoles, strings, domain walls) can naturally arise 
at the phase transitions and influence the properties of the Universe we observe today. The first­
order electroweak (EW) phase transition is a crucial element for electroweak baryogenesis; it 
may also play a role in the formation of the magnetic fields observed in the Universe. The QCD 
phase transition and properties of the quark-gluon plasma are essential for the understanding 
of the physics of heavy-ion collisions. The QCD phase transition in cosmology may influence 
the spectrum of the density fluctuations. 
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The high temperature behaviour I) of the electroweak matter and properties of the EW 
phase transition depend crucially on the Higgs mass. This has cosmological and, perhaps, 
experimental consequences. Electroweak baryogenesis (for a recent review, see 2>) requires a 
strongly first order electroweak phase transition which occurs only in some part of the parameter 
space of the electroweak theory. That, in turn, may provide some information on the masses 
and couplings of yet unknown particles. The absence of the sufficiently strong first order phase 
transition would be a strong argument in favour of GUT origin of the baryon asymmetry of the 
Universe. 

During last several years a great progress was achieved in understanding of the electroweak 
phase transition. I think it is fair to say that the problem has been solved by a combination 
of perturbative and non-perturbative methods. In this talk I am going to review these recent 
developments. 

2 Symmetry properties of EW theory 

At first glance, one should hardly expect any qualitative changes in high temperature elec­
troweak phase transition with mH. One can argue that at T = 0 the SU(2)xU(l)  symmetry 
is "broken" , and intermediate W and Z bosons are massive, while at large enough tempera­
tures T » Mw the symmetry is "restored" , and gauge bosons are massless. This looks like a 
symmetry argument which ensures the existence of the first or second order finite temperature 
phase transition in the theory, independently on the value of the Higgs mass. In fact, this 
argument is wrong. First, even at high temperatures there are no massless vector excitations 
(the previous statement was based on the tree approximation). Second, the gauge symmetry is 
never "broken" - all physical observables by construction are gauge-invariant. Moreover, there 
is no gauge-invariant local order-parameter that can distinguish between the "broken" (Higgs) 
and "restored" phases 3•4) . Thus, there is no gauge symmetry restoration at high temperatures 
( contrary to the gauge symmetry case, global symmetries may be broken or restored), but there 
can be (but not necessarily are) phase transitions. 

This general consideration suggests the phase diagram for the SU(2)-Higgs model shown 
in Fig. 1. If mH < m!iit the phase transition between "symmetric" and "broken" phases is of 
the first kind; at mn < mliit the phase transition is of the second kind, and at mn < m!iit the 
phase transition is absent. However, the previous argument (absence of symmetry breaking) 
says nothing about the value of m!iit - it may very well be zero or infinity. Of course, some 
computations are necessary in order to clarify the phase structure. A one-loop perturbative 
analysis ,  valid at small Higgs masses, mn < mw allows to rule out mliit = 0 5) , but cannot 
distinguish between finite and infinite value of the critical mass. 

In 6> a strong non-perturbative evidence that the line of the first order phase transition 
indeed ends at some critical Higgs mass, m!iit � 75 GeV was presented. In fact, the qualitative 
statement that the phase transition completely disappears in some part of the parameter space 
of the the theory has quite a general character and is true also for different extensions of the 
standard model, including the supersymmetric one. The details of this consideration can be 
found in refs. 6•7> ,  I just explain shortly why the problem of EW phase transition is non­
perturbative, then sketch the logic of its solution, and present the results. 

442 



T 

Higgs phase 

M crit M H H 

Figure 1: Phase diagram of the electroweak theory. 

3 Infrared problem 

The electroweak theory is weakly coupled: tree, or one-loop computations are usually good 
enough for describing all weak reactions we observe experimentally. Why do not use perturba­
tion theory at high temperatures? There is a deep physical reason why it breaks down at high 
T. At zero temperature we apply perturbation theory for consideration of processes where only 
a small number of particles participate. Thus, the expansion parameter is roughly aw. At high 
temperatures, the number of particles, taking part in collisions, may be large. Moreover, for 
bosonic degrees of freedom there is a well-known Bose amplification factor, associated with the 
bosonic distribution nB(E) = (exp( E/T) - 1)-1 , where E = ../k2 + m2 is the particle energy. 
So, the expansion parameter becomes awn(E), which is large at E < awT8l and small in the 
opposite limit. Thus, all "low energy" phenomena cannot be described by perturbation theory, 
just because electroweak interactions are strong in the infrared region. 

In fact, perturbation theory breaks down in the most interesting place, namely at the 
temperatures where different phase transitions are expected. This is because to describe the 
phase transition we should be able to compute the properties of the symmetric and broken 
phases simultaneously, but in the symmetric phase any perturbative infrared cutoff is absent, 
and expansion parameter is large. 

If perturbation theory breaks down a natural inclination would be the use of direct numerical 
non-perturbative methods, such as lattice Monte Carlo simulations. This approach does not 
work, however, for theories containing chiral fermions, since we do not know how to put these 
on the lattice. Thus, theories such as the EW theory or grand unified models cannot be studied 
on the lattice with their complete particle content. This problem does not appear in pure 
bosonic models or in theories containing vector-like fermions, such as QCD. These models can 
be simulated on the lattice, but computations are often very demanding 9) .  Quite ironically, 
the computations are more time consuming for weaker coupling constants. This can be seen as 
follows. At high temperatures, the average distance between particles is of the order of r-1 ,  
and i t  i s  clear that the lattice spacing a must be much smaller than this distance, a « r-1 .  
At the same time, the lattice size N a ,  where N i s  the number of lattice sites in  the spatial 
direction, must be much larger than the infrared scale, described above, i.e. Na » ( awT)-1 • 
Therefore, the lattice size is required to be rather large, N » .,!,, , the larger the smaller the 
coupling constant is. 
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4 Effective field theory approach 

The main idea of the effective theory approach to high-temperature field theory is the factor­
ization of weakly coupled high-momentum modes, with energy E :» awT, and of strongly 
coupled infrared modes with energy E < awT, and the construction of an effective theory for 
infrared modes only. The construction of the effective field theory is perturbative, while its 
analysis may be non-perturbative. Thus, a combination of perturbative and non-perturbative 
methods is to be used to solve the problem. 

In refs. 7) it has been shown that in a weakly coupled electroweak theory and in many of 
its extensions (supersymmetric or not) the hot EW phase transition can be described by an 
SU(2) xU(l )+Higgs model in three Euclidean dimensions. Dimensional reduction has its own 
limitations. For example, for the MSM the 3d approximation is accurate to within few percent 
for 30 GeV :SmH:S 250 GeV. At the lower end of this inequality the high temperature expansion 
breaks down because the phase transition is very strongly first order and particle masses in the 
broken phase are � T 1• The upper end is the usual condition for the applicability of pertur­
bation theory in the scalar sector of the MSM. In the MSSM the latter condition is satisfied 
automatically. Hence, the 3d description is valid for a wide range of the phenomenologically 
interesting part of the parameter space of the MSM and MSSM 7•10> . The 4d lattice simulations 
at sufficiently small Higgs masses of a pure bosonic model were carried out in refs. 9). Whenever 
the comparison between 3d and 4d simulations is possible, they are in agreement, indicating 
the correctness of the dimensional reduction beyond perturbation theory. 

The effective 3d action for soft strongly interacting bosonic modes with k « gwT, describing 
the high-temperature EW theory is: 

(1 ) 

where G't; and F;; are the SU(2) and U(l )  field strengths, respectively, <l> is a scalar doublet, and 
D; is a standard covariant derivative in the fundamental representation. The four parameters 
of the 3d theory (scalar mass m�, scalar self-coupling constant 5.3, and two gauge couplings g3 
and g�) are some functions of the initial parameters and temperature. 

The effective action is three-dimensional, because at high temperatures the fourth, Euclidean 
time dimension is compact, 0 < r < l/T and shrinks down when T is large. It does not contain 
fermions since their 3d masses are "superheavy" ,  mJ � 7rT. It does not contain zero components 
of the gauge fields - triplet and singlet of SU(2) - because these are "heavy" (mv � gwT due 
to the Debye screening of electric fields in plasma) , and can be integrated out. One may wonder 
where are the other scalars, typical for the extensions of the Standard Model. The answer is 
that all extra scalar degrees of freedom are naturally "heavy" (mass � gwT) near the phase 
transition temperature and can be integrated out. (In the case when both scalars are light near 
the critical temperature, a more complicated model, containing two scalar doublets, should be 
studied. However, this case requires fine tuning.) 

1 This actually refers to the 4d SU(2)+Higgs theory without fermions. In the full MSM the transition never 

gets that strong 7) , but on the other hand higher-order Yukawa corrections are becoming large at mH � 30 

GeV. 
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Figure 2: The value x = >.3/ gj as a function of the physical Higgs mass mH and the top quark 
mass m10p near the critical temperature defined from taking m5 = 0. In general, x depends on 
the Higgs mass, the top mass, and logarithmically on the temperature. 

5 Absence of the phase transition 

To study the electroweak phase transition it is sufficient to study an SU(2) x U(l )  gauge-Higgs 
theory in 3d. This 3d theory is defined by one dimensionful parameter g� � g2T and three 
dimensionless ratios 

,\3 _ m5 z = (g__-
�
)2 . x = -=-2°' y = -=4, (2) g3 g3 g3 

The dimensionful coupling constant can be chosen to fix the energy scale. Therefore, the 
phase state of this theory is completely defined by the two numbers x and y, since z is fixed 
experimentally by the measurement of the Weinberg angle. For the MSM the dependence of 
the parameter x on the mass of the Higgs boson near the critical temperature (near y = 0) is 
shown in Fig. 2. 

The parameter y change with the temperature of the system while x stays almost constant. 
Thus, to check if there is a first order phase transition at some particular Higgs mass one should 
fix the parameter x and vary y.  Lattice simulations confirmed the existence of the first order 
phase transition at small Higgs masses, mH < 75 GeV, and allowed to compute reliably the 
parameters of transition 7) . At larger Higgs masses the system behaves very regularly: there 
are no jumps in different order parameters, and correlation lengths in the system stay finite 
6l(second order phase transition implies infinite correlation lengths). Thus, m]f'' is finite, see 
Fig. 2. 

6 Conclusion 

There exist a critical Higgs mass above which there is no high temperature electroweak phase 
transition. For MSM, its value is close to 80 GeV, for more complicated models the specific 
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number depends on the model parameters. It is quite unlikely that there are any cosmological 
consequences coming from the EW epoch if the Higgs mass exceeds the critical value. 

The requirement of the EW baryogenesis provides an even stronger constraint on the 
strength of the EW phase transition. In fact, the constraint 11> does not hold for any Higgs 
mass in the MSM 7) (see Fig. 2) .  It is possible to satisfy this constraint in a specific portion of 
the parameter space of the MSSM 12> : the Higgs mass is smaller than the Z mass, the lightest 
stop mass is smaller than the top mass, and tan (3 < 3. This prediction can be tested at LEP2. 
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