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Physics associated with the Higgs potential is rich and very interesting. I
believe it deserves efforts aimed at explaining it to high school students even
though the subject may appear complex, even formidable at times. Before we
embark on this task we might benefit from an attempt to summarize some of the
basics in this field so we could better see the beauty and the challenges that go
along with it. In this short note I will limit myself to several topics, discussing
electroweak phase transition, QCD phase transition (chiral symmetry breaking),
naturalness problem and vacuum stability. I do not deal directly with the most
obvious topic of the Higgs mechanism of electroweak symmetry breaking.

1 Introduction

The Higgs potential V (H) for a simple case of a real scalar field H can be written
as

V (H) = λ(H2 − v2)2 = λH4 − 2λv2H2 + λv4 (1)

where H is the Higgs field. Taking ∂V (H)
∂H = 0 we find the minimum of the

potential atH = ±v. This defines the current vacuum in the Universe. When we
expand the field H about the minimum as H = h+ v (the standard procedure),
we get

V (h) = λ[(h+ v)2 − v2]2 = λh4 + 4λvh3 + 4λv2h2 (2)

The last term has the form of a mass term, M2
Hh

2/2, hence the Higgs boson
mass is

M2
H = 8λv2 (3)

Both v and λ paramaters are determined experimentally through the measure-
ment of the Fermi constant GF and the Higgs boson mass MH = 126 GeV,
yielding

v
.
= 246 GeV, λ

.
= 0.13 (4)

The potential is shown in Fig.1 for two values of the Higgs mass: the measured
value MH = 126 GeV and MH = 800 GeV. We note that the Higgs mass squared
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Figure 1: Higgs potential in GeV4 as a function of the Higgs field average value
H in GeV for two values of the Higgs mass: MH = 126 GeV (blue line) and
MH = 800 GeV (purple line).

is the curvature of the Higgs potential at the minimum H = v as one can see

from ∂2V (H)
∂H2 |H=v = 8λv2 ≡ M2

H . The valley around the minimum is thus flat
for low MH and narrow with steep sides for large MH , see Fig.1. This point
will have significance for the naturalness problem to be discussed below.

V (H) can be interpreted as the Higgs vacuum energy density (energy density
of the empty space). For our choice of the potential, the vacuum energy density
is zero at the minimum H = v. However, for the potential energy it is the
difference that matters, not the absolute value and thus the relevant contribution
is the constant term in Eq. 1 (the size of the hill at H = 0), λv4 = 4.8 × 108

GeV4. From cosmology we have a vacuum energy density that is roughly 55
orders smaller [3] and this huge difference is a mystery, the cosmological constant
problem.

2 Electroweak phase transition

Elementary particles became massive in the early Universe when the Higgs po-
tential took the form shown in Fig.1 as a result of the electroweak phase tran-
sition which occured at ∼ 10−11 s after the Big Bang. To reconstruct effective
potential at high temperatures present at that time, either perturbative calcula-
tions or lattice simulations are performed within finite temperature effective field
theory. The first order temperature correction to the Standard model potential
of Eq.1 is proportional to T 2, leading to the effective potential [1, 2]

V (T,H) = λ(H2 − v2)2 + b T 2H2 (5)

where b is the coefficient which depends on the couplings of the Standard model
particles to the Higgs field. This potential is shown in Fig.2 left. Here Tc =√

2λv2/b is the critical temperature of the phase transition. For T > Tc the
potential is symmetric with the minimum at H = 0. At T = Tc the valley
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Figure 2: Left: Crossover or second order phase transition [1]. Right: First
order phase transition [1].

becomes very flat and as soon as T < Tc, the potential developes minima at
H > 0 and H < 0. Finally, for T = 0 the minima (which move away from
H = 0 during cooling) arrive at H = ±v and the potential becomes identical
with the one in Fig.1. This kind of phase transition is called second order or
crossover.

Another possibility is the first order phase transition depicted in Fig.2 right.
Here at T = Tc we have 3 degenerate minima: the original one at H = v and
the two minima at nonzero H seperated by a barrier from the central minimum.
At T = Tn the universe tunnels through the barrier and takes its position at
one of the nonzero H minima. The first order scenario could be realized through
the second order temperature correction which modifies the effective potential
as

V (T,H) = λ(H2 − v2)2 + b T 2H2 + a TH3 (6)

where a is a constant.
The nature of the phase transition is very interesting for cosmology. During

second order (or crossover) transitions Universe is constantly at thermal equi-
librium and the system thus loses the memory of the initial state from which it
began. Thus, we do not expect remnants at lower temperatures (T < Tc) from
the unbroken phase [1]. On the other hand for the first order transition, we
could get remnants possibly observable in astrophysical data. Also the hypoth-
esis that matter-antimatter asymmetry is explained by the electroweak phase
transition requires the first order transition.

To determine the nature of the phase transition within the Standard model,
one has to go beyond the perturbative approximations of Eqs. 5,6. As more pre-
cise lattice studies show, the crucial parameter is the Higgs mass. For MH = 126
GeV the phase transition is crossover for the Standard model. This, however,
might change if we go beyond the Standard model. New physics could still
induce the first order phase transition.
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We conclude with a note that the numerical value of the critical temperature
for the Standard model in the approximations of Eqs. 5,6 is around Tc ≈ 160
GeV.

3 QCD phase transition

At t ∼ 10−6 s after the Big Bang the Universe underwent the QCD phase
transition during which free quarks and gluons (quark-gluon plasma) became
confined within hadrons. At almost the same time the chiral symmetry was
broken and nucleons and other hadrons gained their masses. The nucleons
consist of three quarks with current-quark masses of mu ∼ 3 − 5 MeV and
md ∼ 7 − 9 MeV for the up quark and the down quark, respectively. These
masses are attributed to the Higgs field (electroweak phase transition). Since
nucleons have masses of 938 − 939 MeV, the Higgs field is responsible for only
2% of that, whereas 98% derives from the chiral symmetry breaking.

Perhaps surprisingly, the relevant physics can be described formally by the
same scalar potential as the Higgs potential of Eq. 1,

V (H) = λ(H2 − v2)2, (7)

except that parameters v, λ and the field H have to reinterpreted1. The QCD
vacuum is defined by the pion decay constant v = 90 MeV, H is the scalar
field which is, however, not elementary like the Higgs field but is composed
of uū and dd̄ pairs (condensate). The quantum of this field, the so-called σ
meson is the QCD sibling of the Higgs boson. Like the Higgs boson, σ has been
searched for for decades until it was finally concluded around 2010-2013 that
it had been observed at MAMI (Mainz) with the mass of about 660 MeV [4].
The corresponding value of λ is 6.7. Obviously, the potential also looks like a
Mexican hat (Fig. 3) except that the scale is different with units now in MeV
rather than GeV.

The nature of the QCD phase transition is also under an intensive scrutiny
in the heavy ion community. Both scenarios depicted in Fig. 2 are possible,
depending on the energy of colliding heavy ions. For LHC we probe the region
in the phase diagram which corresponds to the crossover phase transition and
this we believe was true also for the early Universe.

While we did not explain how nucleons get their masses (we have not done
that for electroweak symmetry either), we drew a parallel between the two phase
transitions. If we decided to go further in this analogy, we might argue that
even the Higgs field may not be elementary but rather a condensate composed
of, e.g., techniquarks. This is the idea behind technicolor and related theories
of dynamical symmetry breaking, which still represent a serious alternative to
supersymmetry.

1This is the picture we get in the linear σ model which is an effective model of QCD at
few hundred MeV.
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Figure 3: QCD scalar potential in MeV4 as a function of the σ field average
value H in MeV. The difference from the Higgs potential is in the scale (MeV vs
GeV) and the fact that the scalar field here is the condensate of quark-antiquark
pairs.

4 Naturalness problem

Difficulties known as naturalness problem (also hierarchy problem) arise when
we try to calculate the Higgs potential in the Standard model. I will try to
summarize here an excellent explanation by Matt Strassler [5] (in case I fail, go
to his original treatment). The calculation involves sum of many contributions,
such as energy from the quantum fluctuations of the Higgs field itself, energy
from the fluctuations of the top quark field, W field, Z field and so on for all
the fields which interact with the Higgs field. The individual contributions are
shown schematically in Fig.4 as a function of the Higgs field’s value from H = 0
up to some large value H = vmax which is the boundary between where the
Standard model is applicable and where it is not.

The first row of Fig.4 shows contributions from the Standard model fields.
Each of these can be calculated unlike the contributions from new physics be-
yond the Standard model shown in the second row which we do not know how
to calculate. Both contributions in the first row and the second row are big, in
fact much bigger than V (H) in Fig.1 if vmax is much larger than v. Not only
they are big but they also vary a lot with H. Moreover, the contribution of
each field appears unrelated to the other contributions (true for the first row
and natural assumption for the second row). The problem is that when we add
up all the contributions, each of them big and varying a lot, we must somehow
get what experiment tells us: that v = 246 GeV and MH = 126 GeV, that is
we have to end up with the green curve in the third row2. The green curve is
incredibly flat compared to the individual contributions. As Matt Strassler puts
it, it is as though you piled a few mountains from Montana into a deep valley

2The green curve is (almost) the same thing shown in Fig.1 except that the Higgs potential
was shifted by a constant value to negative values which has no physical importance for the
subject discussed here.
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in California and ended up with a plain as flat as Kansas. Recall that the flat
valley around the vacuum H = v corresponds to low MH while large MH leads
to steep sides of the valley. In other words, the individual contributions which
vary a lot (’steep sides’) would most likely induce very large MH , close to vmax.

Moreover, each of individual contributions in Fig. 4 has minima and maxima
at Higgs field values that are either at zero or somewhere around vmax, and
adding those curves together, you will find that the sum of those curves is a
curve that also has its minima and maxima at a substantial fraction of vmax

or at zero, but not at v = 246 GeV (very very close to zero)[5]. So it is both
the Higgs mass and the minimum v which seem unnaturally small and fine-
tuning must be invoked to ensure cancellations between ’Montana peaks’ and
’California valleys’.

We stress that all this is true only to the degree that vmax is much larger
than v. For vmax close to v the fine-tuning is not significant. The naturalness
problem has been the driving force in particle physics for decades. One class
of solutions (such as supersymmetry) concentrates on the symmetries which
ensure that individual contributions in Fig.4 are related in pairs - two curves
have almost equal size and opposite signs leading to the sum which is almost
flat (at least near our vacuum). Another class of solutions (such as technicolor
above) argues that vmax is in fact close to v.

Figure 4: Schematic contributions to the Higgs potential from the Standard
model (first row) and from new physics (second row). If vmax � v, this requires
a very precise cancellation between the known and unknown sources of energy,
one that is highly atypical of quantum theories [5].
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5 Is our vacuum stable?

As we have seen in the previous section, when contributions to the Higgs po-
tential from the quantum fluctuations of the fields of the Standard model (SM)
particles are summed up, we get the green curve in Fig. 4. Note that the green
curve changes its behaviour from increasing to decreasing for very large values
of the average Higgs field H. The crucial question is the continuation of the
green curve for even larger H. Will it follow the curve indicated in Fig. 5
(Left) as ’Stable’? Or will it be more like the curve marked ’Metastable’? The
short answer is that assuming no new physics until Planck scale ∼ 1018 GeV,
the SM calculations indicate that there is a (very large) value of the Higgs field
(Hc) beyond which the Higgs potential becomes negative and the second (true
minimum) develops. This makes our current vacuum metastable - Universe is
ready to tunnel to the true minimum (with catastrophic consequences), albeit
with very low probability.

Figure 5: Left: If the Universe lies in the global minimum of the potential,
then it is stable. But if the minimum is local and a deeper minimum exists,
the vacuum is false, and the Universe might catastrophically tunnel out into
the true vacuum state. Credit: APS/Alan Stonebraker. Right: SM tree-level
Higgs potential of Eq. 1 (purple line) and SM Higgs potential corrected by the
quantum corrections (blue line). Note that we used Eqs. 8 and 9 below with
the top quark mass artificially set to mt = 210 GeV for illustration purposes.

To show that this could be the case, note that the quantum corrections can
be absorbed in the λ parameter of the SM Higgs potential of Eq. 1:

V (H) = λ(H)(H2 − v2)2, (8)

where λ(H) became effectively a running constant, given in the one-loop ap-
proximation by [6]

λ(H) = λ(MH) +
1

4π2

(
− 6

m4
t

v4
+ 24 λ(MH)2 + ...

)
ln(

H

MH
) (9)
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with λ(MH) = 0.13. Only the largest quantum corrections due to the top quark
mass mt and the Higgs field fluctuations (term λ(MH)2)) were included. The
top quark with its large negative contribution induces the crucial change in the
running of λ(H) which becomes negative (and so does V (H)) at some large Hc.

We plot this effective Higgs potential (tree-level + two largest quantum
fluctuations) in Fig. 5 (Right). To illustrate the effect qualitatively within the
linear scale, we set the top quark mass to mt = 210 GeV which yields Hc ∼ 800
GeV. Note, however, that the actual value of Hc, which is very sensitive to
experimentally measured values of MH , mt and also αs and their uncertainties,
is much larger. For current values of these parameters (MH = 125.1 GeV,
mt = 173.3 GeV) the most sophisticated calculations [7] give Hc ∼ 1011 GeV,
signalling that the Higgs potential develops a new global minimum at large
Higgs field values, H ∼ 1017 GeV [8]. The height of the barrier between the two
minima is as high as ∼ 1039 GeV4.

To indicate an extreme sensitivity of the border between stability, metasta-
bility and instability3 to mt and MH , we show in Fig.6 the results of the latest
and most precise calculations of the position of our Standard model vacuum
in the mt −MH plane [7]. Our vacuum sits in the region of metastability but
within just 2σ from the stability region.

Figure 6: Regions of absolute stability, meta-stability and instability of the SM
vacuum in the mt −MH plane

For a calculation of the tunnelling probability of our Universe to the true
vacuum, see for example, Ref. [9].

The decay of our metastable vacuum could be, at least in principle, catal-
ysed by the cosmic ray collisions which could lead to an increased tunnelling
probability. This question has been studied by Ref. [10]. Their results also in-
dicate that ”vacuum decay is very unlikely to be catalysed by particle collisions
in accelerators; the total luminosities involved are simply far too low”.

3Instability means significant probability to tunnel to the true vacuum within the age of
the Universe.
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