

Younes Otarid

QUALIFICATION OF THE BCM1F DETECTOR FOR LUMINOSITY MEASUREMENT IN THE CMS EXPERIMENT

Supervisor : Georg Auzinger georg.auzinger@cern.ch

PSA Master Project Presentation 20/06/2019

- I. BRIL Project, Luminosity measurement at CMS
- II. Description of the BCM1F Detector
- III. DESY test beam setup
- IV. Test beam DAQ SW framework
- V. Test beam data analysis
- VI. Conclusion

BRIL Project, Luminosity

Luminosity $dR/dt = L \cdot \sigma_p$ -----1

- Key parameter of collider performance
- Ability to produce a certain number of specific particle interactions
- Used as normalisation in cross-section measurements

BRIL project

- Beam Radiation Instrumentation and Luminosity
- Online and Offline measurements of Luminosity and Machine Induced Background (MIB)
- Bunch by bunch Lumi measurements
- Various sub-detectors, different designs,
 operated independently

Younes Otarid

BCM1F Detector

- Université BRIL de Strasbourg PLT C-shaped PCB **BCM1F Sensors** pre-amp BCM1L Cooling pipes BCM AOH board Cooling pipes
- Online luminometer that provides Luminosity and MIB measurements
- C-shaped module at 1.83m from the Interaction Point
- pCVD and Si sensors, FE ASIC, Optoelectronic transmission chain
- Fast timing, Non-clocked readout chain, Fully analog signal path untill the back-end system

BCM1F upgrade motivation

- **BCM1F old version** = Combination of pCVD and Si sensors.
- Si sensors showed larger signal and less noise than pCVD before it dies from radiation damage
- BCM1F new version = AC-coupled Si-pad detectors in radiation hard silicon substrate with active cooling.

Need for sensor qualification in a test beam campaign for the upgrade

Back End electronics

- VME back-end (legacy system, Run1,2) :
 - NIM Fan-In/Fan-Out
 - 8 bits VME ADCs, 500Ms/s for amplitude histograms
 - VME RHU (Real-time histogramming unit) for occupancy histograms for luminosity
- MicroTCA back-end (full commissioning for Run3) :
 - Gigabit Link Interface Board (GLIB)
 - 8 bits ADC FMC (FPGA Mezzanine Card), 1.25Gs/s
 - NAT MicroTCA Hub Module as crate controler
 - AMC13 interface to CMS clock & synchronous signals
- MicroTCA advantages :
 - Custom Firmware
 - Combines features of VME ADC & RHU
 - Advanced Peak detection
 - Higher resolution timing histogram

Test beam campaing

- Took place at the Deutsches Elektronen Synchrotron (DESY) in Hamburg
- From 20/05/2019 to 26/05/2019

Université

de Strasbourg

- DESY II test beam facility, beam area n°24
- Beam provided by the DESY II storage ring, up to 6GeV

BRIL

EUDET-type telescope

- MIMOSA-26 Monolithic active pixel sensors
 18.4um x 18.4um pitch size
- ➤ 1152 col x 576 row

- 50um Si sensors, 24um Kapton foil shield
- 21.2mm x 10.6mm active area
- Low material budget, high track resolution

Trigger Logic Unit (TLU)

- Central part of the trigger system
- Provides 4 scintillator trigger inputs (AND, OR)
- Outputs a digital trigger fed to other devices
- Handshake mode to synchronise data acquisition

Device Under Test (DUT)

- 14cm x 14cm PCB with dedicated Optoboard
- 1.7mm x 1.7mm AC-coupled double diode Si sensors :
 - 200um, 300um
- Sensors equipped with guard ring :
 - Grounded on 200um sensor
 - Floating on 300um sensor

Test beam setup

PSA Master Project

Younes Otarid

EUDAQ SW Framework

BCM1F DAQ SW integration

- Linked to the VME library
- Acknoledgment of the VME ADC
- > Parameter configuration :
 - Channel mask
 - Acquisition window
 - Buffer size, Pre-trigger samples
 - External/Internal trigger

uTCA Producer

- Linked to uTCA library
- ► IP address assignement to GLIB card
- Sets the trafic to AMC GLIB
- Parameter configuration:
 - Thresholds for Pulse peak detection
 - Acquisiton window
 - Buffer size
- Functionnal checks on AMC GLIB

BCM1F Online Monitor

- Converter Plug-In : Raw \rightarrow StdEvent (EUDAQ)
- BCM1F collection class for the GUI

Université

de Strasbourg

BCM1F Histogram class for amplitude spectra

PSA Master Project

Younes Otarid

BRIL

PSA Master Project

Younes Otarid

Amplitude Spectra (2)

MicroTCA

VME

Amplitude Spectra (3)

High Voltage scan

- MPV reaches plateau, as expected from capacitance measurements, at :
 - ~150V for sensor1 (200um)
 - ~280V for senor2 (300um)
- Factor two difference between VME and MicroTCA due to electronic gain

Par	СН	VME CH1	VME CH2	VME CH3	uTCA CH1	uTCA CH2	uTCA CH3
pa	r[0]	-1133.64	-724.15	-695.72	532.81	353.19	341.84
pa	r[1]	219753.98	143273.40	138067.06	-688611.35	-47354.99	-44729.34

PSA Master Project

Younes Otarid

Effective thickness 20% different from actual thickness. Most likely due to imperfect calibration measurement

Conclusion

Summary

- A test beam at DESY was carried out to verify the performance of AC-coupled Si-pad detectors in radiation-hard Silicon
- Producers were developped and extensively tested in order to integrate the BCM1F DAQ systems into the DESY EUDAQ SW framework
- > The native EUDAQ Online Monitor was modified to include BCM1F specific plots
- Preliminary sensor qualification was perfomed based on amplitude spectra and detector calibration
- > The analysis showed promising results from AC-coupled design

Outlook

- > Detailed studies of various detector features (baseline, SNR, efficiency, ...)
- Further investigation of the guard ring effects
- Include reconstructed telescope data

Thank you for your attention !

Back up

BCM1F location

MicroTCA system

Gigabit Link Interface Board (GLIB)

PSA Master Project

VME system

СН2

CH3

CH6

СН7

_ANALOG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0		EVENT SIZE						
BOARD-ID Res. 0	PATTER	CHANNEL MASK						
reserved	EVENT COUNTER							
TRIGGER TIME TAG								
SAMPLE(3) CH0	SAMPLE(2) CH0	SAMPLE(1) CH0	SAMPLE(0) CH0					
SAMPLE(7) CH0	SAMPLE(6) CH0	SAMPLE(5) CH0	SAMPLE(4) CH0					
SAMPLE(N-1) CH0	SAMPLE(N-2) CH0	SAMPLE(N-3) CH0	SAMPLE(N-4) CH0					
SAMPLE(3) CH1	SAMPLE(2) CH1	SAMPLE(1) CH1	SAMPLE(0) CH1					
SAMPLE(7) CH1	SAMPLE(6) CH1	SAMPLE(5) CH1	SAMPLE(4) CH1					

SAMPLE(N-1) CH1	SAMPLE(N-2) CH1	SAMPLE(N-3) CH1	SAMPLE(N-4) CH1					
• • •								
SAMPLE(3) CH7	SAMPLE(2) CH7	SAMPLE(1) CH7	SAMPLE(0) CH7					
SAMPLE(7) CH7	SAMPLE(6) CH7	SAMPLE(5) CH7	SAMPLE(4) CH7					
SAMPLE(N-1) CH7	SAMPLE(N-2) CH7	SAMPLE(N-3) CH7	SAMPLE(N-4) CH7					

VME event structure

EUDAQ GUI

🕽 🗇 🐵 eudaq Run Control v1.6.0+142~gfaa1e23*

State:

Current State: Configured

Control /opt/eudag/conf/ExampleInit.init Init: Load Init /opt/eudaq/conf/tlu_only.conf Config: Load Config Run: Start Stop Log: Log GeoID: 0 Terminate Status Run Number: (332)Events Built: 2014 1973.53 (995.098) Hz Rate: Triggers: 2014 File Bytes: 164 kB Particles: 2025 --,--,--,--,-- (0,1) TLU Status: Scalers: 0,0,0,0 Connections type ▲ name state connection Configured... 127.0.0.1:37904 DataCollec... LogCollector Configured... 127.0.0.1:37898 Configured... 127.0.0.1:37906 Producer TLU SlowProdu... Example Configured... 127.0.0.1:37918 000 EUDAO Log Collector

	Lobrid Log concer	01		
Level: From 4-INFO All	: Search:			
Time V Level 17:05:55.740 4-INFO 17:06:20.962 4-INFO 17:09:07.541 4-INFO 17:09:07.546 4-INFO	Text Connection from LogCollector (127.0.0.1:53132) Connection from DataCollector (127.0.0.1:53134) Connection from Producer.Test (127.0.0.1:53136) Connection from Producer.Test (127.0.0.1:53137)	From LogCollector LogCollector LogCollector DataCollector	File euLog.hh:95 euLog.hh:95 euLog.hh:95 DataCollector	Function OnConnect(const

Bethe-Bloch

Derive the same for electrons in Silicon, and deduce the equivalent number of charges generated per micron