

T2K-LPNHE meeting, May 14th, 2019

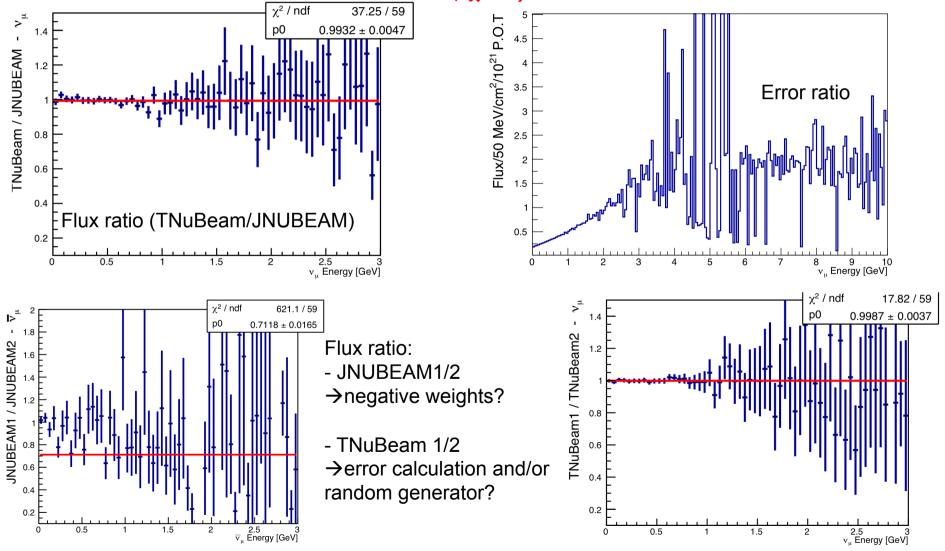
Introduction

T2K simulation based on FLUKA (target) + GEANT3 (beamline)

- FLUKA problematic for various reasons (licence, old versions...)
- GEANT3 also not very convenient (old FORTRAN code, 32-bit compilation...)

At some point, one should migrate all to GEANT4

- For transition process, extensive comparisons between FLUKA and GEANT4 (target) and between GEANT3 and GEANT4 (beamline) should be made
- Tool needed for easy comparisons between MCs


TNuBeam Virtual Monte Carlo

- VMC (Virtual Monte Carlo) is a Root-based C++ framework developed first for ALICE, providing a common interface to different MCs.
- Aimed to run in the same framework FLUKA, GEANT3 and GEANT4, but FLUKA interface not working at the moment
- User is supposed to provide some Classes for detector description, beam definition, output variables, then VMC manages event generation in the same way for GEANT3 and GEANT4.
- TNuBeam is a software developed at LPNHE by A. Robert, B. Popov and L. Zambelli in the VMC framework.
- It provides T2K (target and/or beamline) simulation based on GEANT3 and GEANT4, as well as simulation of various NA61 configurations (Thin Target, Replica Target, ...) and of HARP experiment for comparison with hadron measurements
- It can take FLUKA simulation as input for comparison with T2K (JNUBEAM) simulation

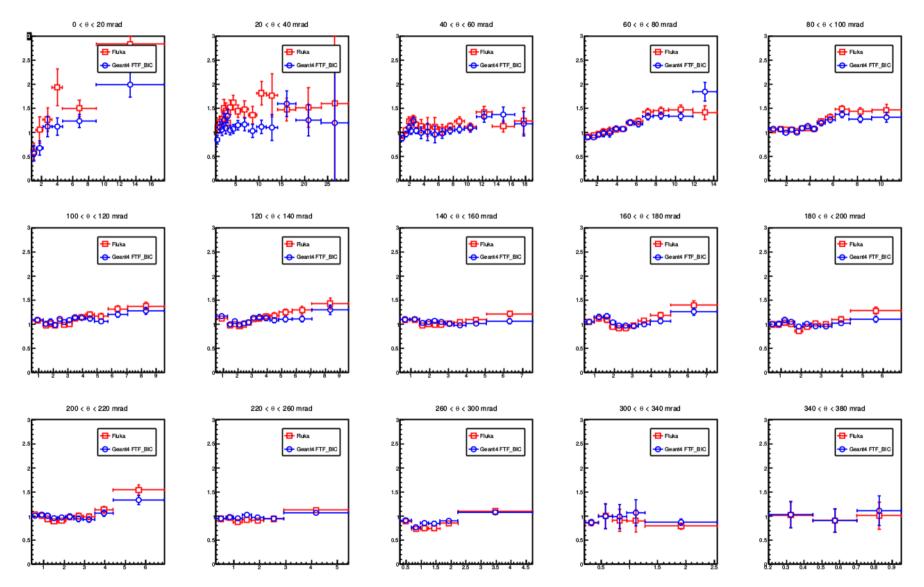
ν flux comparison - TNuBeam (GEANT3) vs JNUBEAM

Status of comparison (ν flux in ND280 detector, target simulation based on Fluka)

- Flux value in agreement at 1% level after adjusting simulation parameters
- Small timing difference (TNuBeam/JNUBEAM ~ 1.5)
- **Problem in error calculation** (error ratio, χ^2 fit)

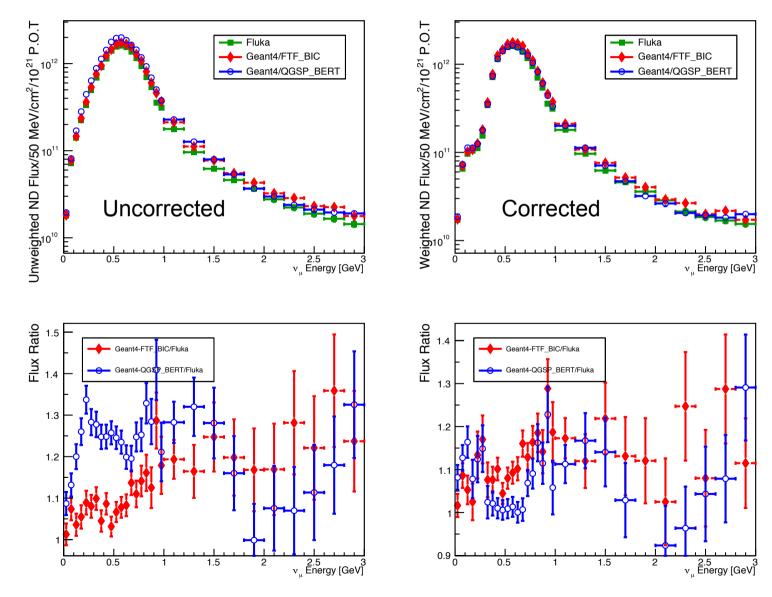
T2K-LPNHE meeting, May 14th, 2019

VMC based T2K Beamline Simulation Studies -4


Comparison of MC predictions for hadron production with latest NA61 (2010) results

- Here are shown weights to be applied to MC to correct back to NA61 measurements, i.e. $\sigma_{\rm NA61}$ / $\sigma_{\rm MC}$.

- Identified a cut coming from old Laura's macro when counting P.O.T. ng>1
- \rightarrow removes protons going through target without interacting
- \rightarrow 14.8 % of protons in MC, 14.2 % expected from simple calculation with graphite interaction length and density
- \rightarrow not clear why it was there, cut removed at the end of the day
- \rightarrow see plots for all hadrons at all *z* as attached files


Comparison with NA61 LT 2010

σ_{NA61} / σ_{MC} π^+ - 0 \leq Z < 18 - MC weights - no ng cut

ν flux comparison (NA61 LT 2010 weighted MC - JNUBEAM)

Comparison of ν flux predictions for different target MCs with same beamline simulation (JNUBEAM/GCALOR), with and without NA61 LT2010 weighting

 ν flux comparison (NA61 LT 2010 weighted MC)

- Lack of statistics → try to increase number of simulated events from 2M to 40M (= 20 jobs of 2M events)
- TNuBeam GEANT4 worked fine for QGSP_BERT, but crashed after O(100K) events for each FTF_BIC simulation. Try to re-run with older TNuBeam version, to recompile everything, etc... but crash still there
- Another problem appeared when trying to simulate 2M events at a time with JNUBEAM ("RZOUT error" after 500K events). Try to recompile JNUBEAM after increasing size of PAW and GEANT Common blocks, but problem still there...
- Also realised it is not possible to do this type of plots with TNuBeam beamline simulation because TNuBeam rootuple doesn't include neutrino parents history at the moment...

Work in progress...

- Comparison with NA61 and first plots of v flux predictions with NA61 LT 2010 weighted target simulations (JNUBEAM)
- Problems pending (and new problems appearing)
 - Negative flux in JNUBEAM? Check TNubeam too...
 - Error calculation/ random generator in TNubeam?
 - Crash in TNuBeam GEANT4/FTF_BIC target simulation?
 - Problem with max number of evts per job in JNUBEAM?
 - Rootuple definition to be changed in TNuBeam