Massive data management (using Big Data technologies)

ESCAPE WP2/WP5 Workshop (Amsterdam 1st - 3rd of July 2019)

J. Rico, M. Delfino, G. Merino, <u>J. Delgado</u> on behalf of IFAE-PIC

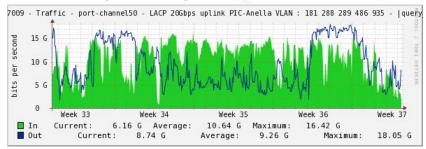
Outline

- Port d'Informació Científica (PIC) overview
- Motivation for a Big Data platform CosmoHub
- IFAE-PIC proposal for the WP5

European Science Cluster of Astronomy & Particle physics ESFRI research Infrastructures

Port d'Informació Científica (PIC)

- Founded in 2003:
 - Collaboration between IFAE and CIEMAT
- Supported projects

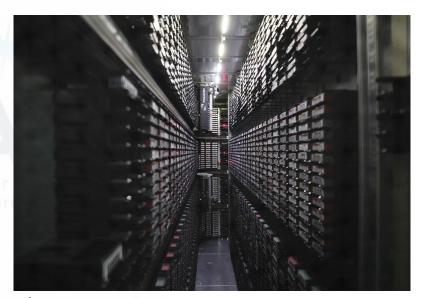

campus

- Spanish Tier-1 Large Hadron Collider (LHC - WLCG)
- MAGIC Data Center
- **EUCLID SDC-Spain**

PIC - Network

- External network
 - 20 Gbps Wide Area Network (WAN)
 - 49,4 PB of data transferred last year (in and out)
 - 1 x 10 Gbps optical paths to CERN
 - 1 x 10 Gbps to Observatorio del Roque de los Muchachos (ORM MAGIC Control House)
 - 250TB/year of data transferred to PIC from ORM for MAGIC
- Internal network
 - 240x 10 Gbps ports wire speed in core router
- 100 Gbps WAN connection expected by 2021

PIC - Disk Storage


- Distributed Hierarchical File System (dCache):
 - o 50 nodes
 - o 11 PB
 - Interfaces (how one can access the storage)
 - NFS
 - WebDAV
 - gridFTP
 - Xrootd
 - Integrated with the tape system

PIC - Tape Storage

- Hardware Oracle Tape Library SL8500
 - Library capacity (max. 6630 slots)
 - 5010 occupied slots
 - Current capacity 25 PB
 - Drive capacity (max. 64 drives)
 - 18 drives (4 LTO5, 8 T10KC, 6 T10KD)
 - Cartridge capacity rticle physics ESFRI resear
 - LTO-5: 1.5 TB
 - T10KC: 5.4 TB
 - T10KD: 8.4 TB
- Second tape library IBM under installation and test
- Software Enstore (developed by Fermilab)

PIC - Computing resources

- Resources
 - 8426 cores computing farm
 - ~ 11,000,000 jobs / year
 - 448 cores in Hadoop
 - User interfaces and other grid elements
- Job types:
 - Single / Multi core
 - o MPI
- Batch job management:
 - o PBS
 - HTCondor
 - YARN (Hadoop)
- Liquid immersion cooling for nodes (PUE=1.1)

Cosmology Projects

Galaxy Catalogs: our main roles

- Generation and validation
- Exploration and interactive visualization
- Data **Distribution**

Main challenge: distribute and explore large datasets

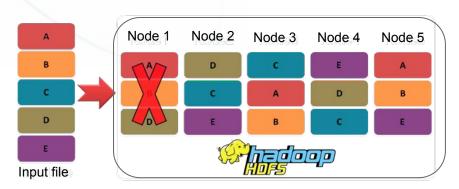
After storing, reducing and calibrating the observed images one of the main outputs is a galaxy catalog, which contains their positions along with hundreds of other properties such as the luminosity, colour, morphology, etc

Project	Date	volume/night	Total Volume	Number of Objects (catalog)	
SDSS	2000-now	variable	RI reseat116 TiB	2x10 ⁶	
MICE GS	2013	NA	42 TiB	5x10 ⁸	
DES	2013-2018	2.5 TiB	2 PiB	4x10 ⁸	
GAIA	2014-2019	40 GiB	1 PiB	1.1 x 10 ⁹	
Euclid	2020-2025	100 GiB	580 TiB	1.5 x 10 ⁹	
LSST	2022-2032	15 TiB	50 PiB	1x10 ¹⁰	

MICECat2: How we did it back in 2015?

MICECat2: 5x10⁸ number of objects

- Data located in different personal computers
 - Many data transfers
- Different people coding the same thing
 - No software version control
- It took some months to create it
- We finally ingested it into our distribution platform (relational database).
 It took 26 hours!



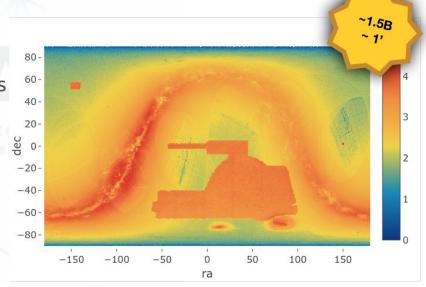
Big Data Platform

- Based on Hadoop (Hortonworks HDP 2.6)
 - Open source Big Data Platform
 - Distributed storage and processing
 - Runs on top of commodity computer clusters
 - Scalable from dozens up to thousands of nodes
 - Performance scales with HW
 - Fault tolerant
 - Simple machines working together no single point of failure

PIC Hadoop platform

- 16 nodes + 3 head + UI
- 448 total cores
- (192 + 128) TiB HDD

SciPIC: Scientific pipeline @ PIC


- Set of python code / algorithms to generate synthetic galaxy catalogs using Dark
 Matter simulations
- Runs on top of the PIC Big Data platform using **Spork**
- Software version control (git)
- Stored in CosmoHub ready to be explored and distributed

	input		output		time	time
	objects	size	objects	size		(+WL)
octant	5 x 10°	0.7 TiB	7.4 x 10 ⁹	3.2 TiB	< 2 h *	< 10 h *
full sky	4 x 10 ¹⁰	5.5 TiB	6 x 10 ¹⁰	25.5 TiB	< 16 h *	< 80 h *

- Based on Apache Hive (ORC file format)
- Distribution
 - Query time range: seconds to minutes
 - 85% in < 3 min.
- Exploration (Visualization)
 - Unlimited time
 - Full dataset plots (over all raws)
 - May use sampling
 - 1D histogram & 2D heatmap

https://cosmohub.pic.es

GammaHUB: contribution of IFAE-PIC to ESCAPE WP5

- Will contain a substrate of the Hadoop platform
- Data ingestion:
 - Based on DL3 format files from the archive of several gamma-ray observatories (i.e HESS, MAGIC, CTA, other ESFRIS...?)

MAGIC Is collecting ~10⁸ entries per year

- DL3 refers to a reduced level of data, describing gamma-ray candidates
 - Fields describing the the primary particle (energy, arrival direction...)
 - Fields describing primary interaction (time, height...)
 - Fields describing the telescope status (pointing direction, pointing IRFs...)
- Apart from the event list, DL3 should contain the IRFs describing the events

GammaHUB: contribution of IFAE-PIC to ESCAPE WP5

- Main services on the platform
 - Web interface for interactive/on-line exploration and visualization of the selected datasets. Some examples:
 - Full sky skymap with the arrival direction of all events
 - Histogram counting the number of events coming from a given direction
 - Compute the significance of detection of a gamma-ray source in a given position of the sky
 - Plot the (unfolded) energy spectrum of gamma-rays coming from a given direction in a given interval of time
 - Other tasks of general interest to be identified...
 - Provide standard basic final analysis products, such as spectra and lightcurves.
 - User-friendly (of course), guided for expert and non-expert users

GammaHUB: contribution of IFAE-PIC to ESCAPE WP5

- Main services on the platform
 - Web-based analysis on demand service based on Python Notebooks (JupyterLab)
 - Accessing to the DL3 archive
 - Load python packages for gamma ray analysis
 - Linked to Hadoop engines
 - For expert users

Summary and conclusions

- Data management is crucial to:
 - Deliver scientific results successfully & on time
 - Engage community and boost outreach
- PIC has lots of expertise in data management in different science cases:
 - Particle physics, Astrophysics, Cosmology...
 - Development, integration and operation
 - Small and large collaboration projects
- PIC explores and develops on new technologies:
 - Big Data (Hadoop, Hive, Spark)
 - File formats (FITS, ASDF, Parquet, Arrow)
 - Machine Learning (over GPU)

Take the expertise from Big Data technologies (CosmoHub)

Applied to Gamma-ray astronomy

Massive data management (using Big Data technologies)

ESCAPE WP2/WP5 Workshop (Amsterdam 1st - 3rd of July 2019)

J. Rico, M. Delfino, G. Merino, <u>J. Delgado</u> on behalf of IFAE-PIC

